These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 471982)

  • 1. [Evaluation of the functional state of the thrombocyte-forming megakaryocytic cells].
    Tkacheva TV; Serebriakova LA
    Probl Gematol Pereliv Krovi; 1979 Jul; 24(7):41-4. PubMed ID: 471982
    [No Abstract]   [Full Text] [Related]  

  • 2. Humoral regulation of human megakaryocytopoiesis.
    Hoffman R; Straneva JE; Yang HH; Bruno E; Beyer G
    Prog Clin Biol Res; 1985; 184():223-32. PubMed ID: 3876567
    [No Abstract]   [Full Text] [Related]  

  • 3. Megakaryocytopoiesis: growth factors, cell cycle and gene expression.
    Baatout S
    Anticancer Res; 1998; 18(3B):1871-82. PubMed ID: 9677438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of primary megakaryocytes and studies of proplatelet formation.
    Leven RM
    Methods Mol Biol; 2004; 272():281-91. PubMed ID: 15226551
    [No Abstract]   [Full Text] [Related]  

  • 5. [Regulation of megakaryocyte and platelet production].
    Nagasawa T; Nagata M
    Rinsho Ketsueki; 1997 Apr; 38(4):241-4. PubMed ID: 9146042
    [No Abstract]   [Full Text] [Related]  

  • 6. Megakaryocytopoiesis and platelet production: a review.
    Mazur EM
    Exp Hematol; 1987 May; 15(4):340-50. PubMed ID: 3552711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thrombopoietin: the primary regulator of megakaryocytopoiesis and thrombopoiesis.
    Eaton DL; de Sauvage FJ
    Exp Hematol; 1997 Jan; 25(1):1-7. PubMed ID: 8989900
    [No Abstract]   [Full Text] [Related]  

  • 8. The frequency and proliferative potential of megakaryocytic colony-forming cells (Meg-CFC) in cord blood, cytokine-mobilized peripheral blood and bone marrow, and their correlation with total CFC numbers: implications for the quantitation of Meg-CFC to predict platelet engraftment following cord blood transplantation.
    Drygalski A; Xu G; Constantinescu D; Kashiwakura I; Farley T; Dobrila L; Rubinstein P; Adamson JW
    Bone Marrow Transplant; 2000 May; 25(10):1029-34. PubMed ID: 10828861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of megakaryocytic and erythroid properties in human leukemic cells.
    Tani T; Ylänne J; Virtanen I
    Exp Hematol; 1996 Feb; 24(2):158-68. PubMed ID: 8641337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombin-stimulated effects on megakaryocytopoiesis and pulmonary-platelet interactions.
    Warheit DB; Salley SO; Barnhart MI
    Gen Physiol Biophys; 1989 Dec; 8(6):611-31. PubMed ID: 2612870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic manipulation of megakaryocytes to study platelet function.
    Liu J; DeNofrio J; Yuan W; Wang Z; McFadden AW; Parise LV
    Curr Top Dev Biol; 2008; 80():311-35. PubMed ID: 17950378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low numbers of megakaryocyte progenitors in grafts of cord blood cells may result in delayed platelet recovery after cord blood cell transplant.
    Kanamaru S; Kawano Y; Watanabe T; Nakagawa R; Suzuya H; Onishi T; Yamazaki J; Nakayama T; Kuroda Y; Takaue Y
    Stem Cells; 2000; 18(3):190-5. PubMed ID: 10840072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does autoregulation of megakaryocytopoiesis occur?
    Ebbe S; Phalen E
    Blood Cells; 1979 Mar; 5(1):123-38. PubMed ID: 555684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro expansion of human megakaryocytes as a tool for studying megakaryocytic development and function.
    Majka M; Baj-Krzyworzeka M; Kijowski J; Reca R; Ratajczak J; Ratajczak MZ
    Platelets; 2001 Sep; 12(6):325-32. PubMed ID: 11672471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signaling receptors on platelets and megakaryocytes.
    Woulfe D; Yang J; Prevost N; O'Brien P; Fortna R; Tognolini M; Jiang H; Wu J; Brass LF
    Methods Mol Biol; 2004; 273():3-32. PubMed ID: 15308791
    [No Abstract]   [Full Text] [Related]  

  • 16. Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin-amplified in clinical grade serum-free culture.
    Mattia G; Milazzo L; Vulcano F; Pascuccio M; Macioce G; Hassan HJ; Giampaolo A
    Exp Hematol; 2008 Feb; 36(2):244-52. PubMed ID: 18023520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of serum thrombopoietin levels by platelets and megakaryocytes in patients with aplastic anaemia and idiopathic thrombocytopenic purpura.
    Ichikawa N; Ishida F; Shimodaira S; Tahara T; Kato T; Kitano K
    Thromb Haemost; 1996 Aug; 76(2):156-60. PubMed ID: 8865522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 12-O-tetradecanoylphorbol-13-acetate and staurosporine induce increased retinoblastoma tumor suppressor gene expression with megakaryocytic differentiation of leukemic cells.
    Yen A; Varvayanis S; Platko JD
    Cancer Res; 1993 Jul; 53(13):3085-91. PubMed ID: 8363661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thrombocytokinetic examination in patients with hereditary thrombocytopenia.
    Fortýnová J; Farská I; Pudlák P; Krecek M; Májský A; Vopatová M
    Acta Univ Carol Med Monogr; 1972; 53():345-51. PubMed ID: 4677607
    [No Abstract]   [Full Text] [Related]  

  • 20. Isolation of mouse megakaryocytes. II. Functional and metabolic aspects of two different maturational stages.
    Wesemann W; Raha S; McDonald TP
    Eur J Cell Biol; 1985 May; 37():117-21. PubMed ID: 4029166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.