These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 4721616)

  • 1. Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen.
    Harfoot CG; Noble RC; Moore JH
    Biochem J; 1973 Apr; 132(4):829-32. PubMed ID: 4721616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of plant particles, bacteria and cell-free supernatant fractions of rumen contents in the hydrolysis of trilinolein and the subsequent hydrogenation of linoleic acid.
    Harfoot CG; Noble RC; Moore JH
    Antonie Van Leeuwenhoek; 1975; 41(4):533-42. PubMed ID: 1083209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species.
    Kemp P; White RW; Lander DJ
    J Gen Microbiol; 1975 Sep; 90(1):100-14. PubMed ID: 1236930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen.
    van de Vossenberg JL; Joblin KN
    Lett Appl Microbiol; 2003; 37(5):424-8. PubMed ID: 14633116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid.
    Devillard E; McIntosh FM; Newbold CJ; Wallace RJ
    Br J Nutr; 2006 Oct; 96(4):697-704. PubMed ID: 17010229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing the extent of biohydrogenation of linoleic acid by rumen micro-organisms in vitro.
    Harfoot CG; Noble RC; Moore JH
    J Sci Food Agric; 1973 Aug; 24(8):961-70. PubMed ID: 4731354
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of holotrichs in the metabolism of dietary linoleic acid in the rumen.
    Girard V; Hawke JC
    Biochim Biophys Acta; 1978 Jan; 528(1):17-27. PubMed ID: 563731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of a rumen bacterium that hydrogenates oleic acid as well as linoleic acid and linolenic acid.
    White RW; Kemp P; Dawson RM
    Biochem J; 1970 Feb; 116(4):767-8. PubMed ID: 5435501
    [No Abstract]   [Full Text] [Related]  

  • 9. BIOHYDROGENATION OF UNSATURATED FATTY ACIDS BY RUMEN BACTERIA.
    POLAN CE; MCNEILL JJ; TOVE SB
    J Bacteriol; 1964 Oct; 88(4):1056-64. PubMed ID: 14219019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative significance of exogenous and de novo synthesized fatty acids in the formation of rumen microbial lipids in vitro.
    Demeyer DI; Henderson C; Prins RA
    Appl Environ Microbiol; 1978 Jan; 35(1):24-31. PubMed ID: 623468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria.
    Nam IS; Garnsworthy PC
    J Appl Microbiol; 2007 Sep; 103(3):551-6. PubMed ID: 17714387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen.
    Dawson RM; Kemp P
    Biochem J; 1969 Nov; 115(2):351-2. PubMed ID: 5378385
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro.
    Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ
    J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruminal biohydrogenation of linoleoyl methionine and calcium linoleate in sheep.
    Fotouhi N; Jenkins TC
    J Anim Sci; 1992 Nov; 70(11):3607-14. PubMed ID: 1459921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observations on the pattern on biohydrogenation of esterified and unesterified linoleic acid in the rumen.
    Noble RC; Moore JH; Harfoot CG
    Br J Nutr; 1974 Jan; 31(1):99-108. PubMed ID: 4810360
    [No Abstract]   [Full Text] [Related]  

  • 16. The hydrogenation of the series of methylene-interrupted cis,cis-octadecadienoic acids by pure cultures of six rumen bacteria.
    Kemp P; Lander DJ; Holman RT
    Br J Nutr; 1984 Jul; 52(1):171-7. PubMed ID: 6743637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on biohydrogenation of polyunsaturated fatty acids and their Ca-salts by rumen microorganisms in vitro.
    Van Nevel CJ; Demeyer DI
    Arch Tierernahr; 1996; 49(2):151-7. PubMed ID: 8767062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial biohydrogenation of oleic acid to trans isomers in vitro.
    Mosley EE; Powell GL; Riley MB; Jenkins TC
    J Lipid Res; 2002 Feb; 43(2):290-6. PubMed ID: 11861671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of absence of protozoa on rumen biohydrogenation and the fatty acid composition of lamb muscle.
    Yáñez-Ruiz DR; Williams S; Newbold CJ
    Br J Nutr; 2007 May; 97(5):938-48. PubMed ID: 17381978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids.
    Or-Rashid MM; Odongo NE; McBride BW
    J Anim Sci; 2007 May; 85(5):1228-34. PubMed ID: 17145972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.