These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4722056)

  • 1. Detection of dopamine, noradrenaline and 5-hydroxy-tryptamine in the cerebral ganglion of the desert locust, Schistocerca gregaria Forsk (Insecta: Orthoptera).
    Klemm N; Axelsson S
    Brain Res; 1973 Jul; 57(2):289-98. PubMed ID: 4722056
    [No Abstract]   [Full Text] [Related]  

  • 2. Neuronal localization of monoamines in the cerebral ganglia of the snail Helix pomatia.
    Bardessono F; Glacobini E; Stepita-Klauco M
    Brain Res; 1972 Dec; 47(2):427-37. PubMed ID: 4264629
    [No Abstract]   [Full Text] [Related]  

  • 3. Octopamine, dopamine and noradrenaline content of the brain of the locust, Schistocerca gregaria.
    Robertson HA
    Experientia; 1976 May; 32(5):552-4. PubMed ID: 776646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective uptake of indolamine into nervous fibres in the brain of the desert locust, Schistocerca gregaria forskal (Insecta). A fluorescence and electron microscopic investigation.
    Klemm N; Schneider L
    Comp Biochem Physiol C Comp Pharmacol; 1975 Apr; 50(2):177-82. PubMed ID: 240638
    [No Abstract]   [Full Text] [Related]  

  • 5. Blockade of the psychotic syndrome caused by nialamide in mice.
    Corrodi H
    J Pharm Pharmacol; 1966 Mar; 18(3):197-9. PubMed ID: 4381221
    [No Abstract]   [Full Text] [Related]  

  • 6. Organization of catecholamine and serotonin-immunoreactive neurons in the corpora pedunculata of the desert locust, Schistocerca gregaria Forsk.
    Klemm N; Sundler F
    Neurosci Lett; 1983 Mar; 36(1):13-7. PubMed ID: 6343929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histochemical studies on the distribution of catecholamines and 5-hydroxytryptamine after intraventricular injections.
    Fuxe K; Ungerstedt U
    Histochemie; 1968; 13(1):16-28. PubMed ID: 5741831
    [No Abstract]   [Full Text] [Related]  

  • 8. Monoamine-containing nervous fibres in foregut and salivary gland of the desert locust, Schistocerca gregaria Forskal (Orthoptera, Acrididae).
    Klemm N
    Comp Biochem Physiol A Comp Physiol; 1972 Sep; 43(1):207-11. PubMed ID: 4404578
    [No Abstract]   [Full Text] [Related]  

  • 9. An epizootic among laboratory stocks of the desert locust, Schistocerca gregaria Forsk.
    STEVENSON JP
    Nature; 1954 Jul; 174(4422):222. PubMed ID: 13185276
    [No Abstract]   [Full Text] [Related]  

  • 10. Thelytokous parthenogenesis for four generations in the desert locust (Schistocerca gregaria Forsk) (Acrididae).
    HAMILTON AG
    Nature; 1953 Dec; 172(4390):1153-4. PubMed ID: 13111277
    [No Abstract]   [Full Text] [Related]  

  • 11. In Search for Pheromone Receptors: Certain Members of the Odorant Receptor Family in the Desert Locust
    Pregitzer P; Jiang X; Grosse-Wilde E; Breer H; Krieger J; Fleischer J
    Int J Biol Sci; 2017; 13(7):911-922. PubMed ID: 28808423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on uptake of intraventricularly administered tritiated noradrenaline and 5-hydoxytryptamine with combined fluorescence histochemical and autoradiographic technics.
    Fuxe K; Hökfelt T; Ritzén M; Ungerstedt U
    Histochemie; 1968; 16(2):186-94. PubMed ID: 5710413
    [No Abstract]   [Full Text] [Related]  

  • 13. Biochemistry of locusts; insectorubin metabolism in the desert locust (Schistocerca gregaria Forsk.) and the African migratory locust (Locusta migratoria migratorioides R. and F.).
    GOODWIN TW
    Biochem J; 1950; 47(5):554-62. PubMed ID: 14800970
    [No Abstract]   [Full Text] [Related]  

  • 14. Some observations on the site of action of oxypertin.
    Fuxe K; Grobecker H; Hökfelt T; Jonsson J; Malmfors T
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 256(4):450-63. PubMed ID: 5622482
    [No Abstract]   [Full Text] [Related]  

  • 15. Interaction of bradykinin with dopaminergic receptors in the CNS.
    Moniuszko-Jakoniuk J; Wiśniewski K
    Pol J Pharmacol Pharm; 1977; 29(3):301-11. PubMed ID: 887505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of release of alpha-methylated noradrenaline analogues by monoamine oxidase inhibitors.
    Carlsson A; Lindqvist M; Waldeck B
    Eur J Pharmacol; 1968 Apr; 3(1):34-9. PubMed ID: 5654667
    [No Abstract]   [Full Text] [Related]  

  • 17. 6-Hydroxydopamine: effect on mouse brain monoamines and 14C-noradrenaline uptake.
    Masuoka DT; Alcaraz AF
    Eur J Pharmacol; 1973 Nov; 24(2):234-42. PubMed ID: 4765746
    [No Abstract]   [Full Text] [Related]  

  • 18. Biochemistry of locusts; insectorubin; the redox pigment present in the integument and eyes of the desert locust (Schistocerca gregaria Forsk.), the African migratory locust (Locusta migratoria migratorioides R. and F.) and other insects.
    GOODWIN TW; SRISUKH S
    Biochem J; 1950; 47(5):549-54. PubMed ID: 14800969
    [No Abstract]   [Full Text] [Related]  

  • 19. Toxicity and the action of reserpine on brain monoamines after pretreatment with monoamine oxidase inhibitors in isolated and aggregated mice.
    Pfeifer AK; Galambos E
    Psychopharmacologia; 1967; 11(2):130-5. PubMed ID: 5588185
    [No Abstract]   [Full Text] [Related]  

  • 20. Noradrenaline nerve terminals in the cerebral cortex: effects on noradrenaline uptake and storage following axonal lesion with 6-hydroxydopamine.
    Lidbrink P; Jonsson G
    J Neurochem; 1974 May; 22(5):617-26. PubMed ID: 4152079
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.