These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4722249)

  • 1. Evaluation of roles of potassium, inorganic phosphate, osmolarity, pH, pCO2, pO2, and adenosine or AMP in exercise and reactive hyperemias in canine hindlimb muscles.
    Tominaga S; Suzuki T; Nakamura T
    Tohoku J Exp Med; 1973 Apr; 109(4):347-63. PubMed ID: 4722249
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of O2 and CO2 in sustained exercise hyperemia of canine skeletal muscle.
    Stowe DF; Owen TL; Anderson DK; Haddy FJ; Scott JB
    Am J Physiol; 1975 Jul; 229(1):28-33. PubMed ID: 238405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of adenosine or AMP as a probable mediator of blood flow regulation in canine hindlimb muscles.
    Tominaga S; Watanabe K; Nakamura T
    Tohoku J Exp Med; 1975 Feb; 115(2):185-95. PubMed ID: 1129766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lactate, ammonia, inorganic phosphate, potassium, pH, pCO2 and pO2 on the activities of adenosine and AMP aminohydrolases from skeletal and cardiac muscles.
    Watanabe K; Tominaga S; Nakamura T
    Tohoku J Exp Med; 1973 Dec; 111(4):353-60. PubMed ID: 4793434
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine and active hyperemia in dog skeletal muscle.
    Bockman EL; Berne RM; Rubio R
    Am J Physiol; 1976 Jun; 230(6):1531-7. PubMed ID: 937542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of exercise and reactive hyperemias in canine hindlimb muscles under constant pressure perfusion.
    Tominaga S; Watanabe K; Nakamura T
    Tohoku J Exp Med; 1973 Sep; 111(1):51-60. PubMed ID: 4776737
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of osmolarity, K+, H+, Mg++, and O2 in local blood flow regulation.
    Scott JB; Rudko M; Radawski D; Haddy FJ
    Am J Physiol; 1970 Feb; 218(2):338-45. PubMed ID: 5412445
    [No Abstract]   [Full Text] [Related]  

  • 8. Heart rate and ventilation in relation to venous [K+], osmolality, pH, PCO2, PO2, [orthophosphate], and [lactate] at transition from rest to exercise in athletes and non-athletes.
    Tibes U; Hemmer B; Böning D
    Eur J Appl Physiol Occup Physiol; 1977 Jan; 36(2):127-40. PubMed ID: 13993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic factors involved in regulation of muscle blood flow.
    Hudlická O; el Khelly F
    J Cardiovasc Pharmacol; 1985; 7 Suppl 3():S59-72. PubMed ID: 2409401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total amount of adenosine and AMP released from canine skeletal muscle after ischemia and during contractions.
    Tominaga S; Watanabe K; Suzuki T; Nakamura T
    Tohoku J Exp Med; 1973 Oct; 111(2):199-200. PubMed ID: 4784398
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of vasoactive substances in active hyperemia in skeletal muscle (38520).
    Radawski DP; Hoppe W; Haddy FJ
    Proc Soc Exp Biol Med; 1975 Jan; 148(1):270-6. PubMed ID: 236570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperosmolality and vasodilatation in human skeletal muscle.
    Lundvall J; Mellander S; White T
    Acta Physiol Scand; 1969; 77(1):224-33. PubMed ID: 5348352
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of muscle blood flow.
    Hudlická O
    Clin Physiol; 1985 Jun; 5(3):201-29. PubMed ID: 3924469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of adenine nucleotides, adenosine, and inorganic phosphate in the regulation of skeletal muscle blood flow.
    Dobson JG; Rubio R; Berne RM
    Circ Res; 1971 Oct; 29(4):375-84. PubMed ID: 5315522
    [No Abstract]   [Full Text] [Related]  

  • 15. Influence of stimulation parameters on the release of adenosine, lactate and CO2 from contracting dog gracilis muscle.
    Achike FI; Ballard HJ
    J Physiol; 1993 Apr; 463():107-21. PubMed ID: 8246177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of vasoactive substances in exercise hyperemia: O2, K+, and osmolality.
    Skinner NS; Costin JC
    Am J Physiol; 1970 Nov; 219(5):1386-92. PubMed ID: 5473123
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of hypokalemia and hypomagnesemia produced by hemodialysis on vascular resistance in canine skeletal muscle: role of potassium in active hyperemia.
    Anderson DK; Roth SA; Brace RA; Radawski D; Haddy FJ; Scott JB
    Circ Res; 1972 Aug; 31(2):165-73. PubMed ID: 5049734
    [No Abstract]   [Full Text] [Related]  

  • 18. Lack of influence of potassium or osmolality on steady-state exercise hyperemia.
    Mohrman DE
    Am J Physiol; 1982 Jun; 242(6):H949-54. PubMed ID: 7091354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic factors from exercising muscle and the proliferation of endothelial cells.
    Burton HW; Barclay JK
    Med Sci Sports Exerc; 1986 Aug; 18(4):390-5. PubMed ID: 2427912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of work duration on the regulation of muscle blood flow.
    Eklund B
    Acta Physiol Scand Suppl; 1974; 411():1-64. PubMed ID: 4529578
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.