BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 4723218)

  • 1. Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate.
    Morville M; Reid M; Eddy AA
    Biochem J; 1973 May; 134(1):11-26. PubMed ID: 4723218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide.
    Eddy AA
    Biochem J; 1968 Jun; 108(2):195-206. PubMed ID: 5665884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis.
    Eddy AA; Nowacki JA
    Biochem J; 1971 May; 122(5):701-11. PubMed ID: 5129266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sodium ion concentration gradient formed during the absorption of glycine by mouse ascites-tumour cells.
    Eddy AA
    Biochem J; 1969 Nov; 115(3):505-9. PubMed ID: 5353524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accumulation of amino acids by mouse ascites-tumour cells. Dependence on but lack of equilibrium with the sodium-ion electrochemical gradient.
    Hacking C; Eddy AA
    Biochem J; 1981 Feb; 194(2):415-26. PubMed ID: 7305998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors.
    Eddy AA; Mulcahy MF; Thomson PJ
    Biochem J; 1967 Jun; 103(3):863-76. PubMed ID: 6072273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide.
    Eddy AA
    Biochem J; 1968 Jul; 108(3):489-98. PubMed ID: 5667259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium and steady-state models of the coupling between the amino acid gradient and the sodium electrochemical gradient in mouse ascites- tumour cells.
    Philo RD; Eddy AA
    Biochem J; 1978 Sep; 174(3):811-7. PubMed ID: 728087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells.
    Eddy AA; Hogg MC
    Biochem J; 1969 Oct; 114(4):807-14. PubMed ID: 5343789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ouabain on amino acid uptake by mouse ascites-tumour cells in the presence of nigericin.
    Johnson E; Eddy AA
    Biochem J; 1985 Mar; 226(3):773-9. PubMed ID: 3985945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion gradients and the accumulation of various amino acids by mouse ascites-tumour cells depleted of adenosine of adenosine triphosphate.
    Eddy AA; Hogg C; Reid M
    Biochem J; 1969 Mar; 112(1):11P-12P. PubMed ID: 5774489
    [No Abstract]   [Full Text] [Related]  

  • 13. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells.
    Potashner SJ; Johnstone RM
    Biochim Biophys Acta; 1971 Mar; 233(1):91-103. PubMed ID: 5579140
    [No Abstract]   [Full Text] [Related]  

  • 14. L-leucine, L-methionine, and L-phenylalanine share a Na(+)/K (+)-dependent amino acid transporter in shrimp hepatopancreas.
    Duka A; Ahearn GA
    J Comp Physiol B; 2013 Aug; 183(6):763-71. PubMed ID: 23615795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+, and K+ in incubated slices of mouse brain.
    Banay-Schwartz M; Teller DN; Gergely A; Lajtha A
    Brain Res; 1974 May; 71(1):117-31. PubMed ID: 4132385
    [No Abstract]   [Full Text] [Related]  

  • 16. Driving forces of amino acid transport in animal cells.
    Heinz E; Geck P; Pietrzyk C
    Ann N Y Acad Sci; 1975 Dec; 264():428-41. PubMed ID: 1062963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport in mouse ascites tumor cells: symport of Na+ with amino acids.
    Eddy AA; Johnson ER
    Methods Enzymol; 1989; 173():771-7. PubMed ID: 2674622
    [No Abstract]   [Full Text] [Related]  

  • 18. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradients.
    Gibb LE; Eddy AA
    Biochem J; 1972 Oct; 129(4):979-81. PubMed ID: 4676314
    [No Abstract]   [Full Text] [Related]  

  • 19. The concentration of amino acids by yeast cells depleted of adenosine triphosphate.
    Eddy AA; Backen K; Watson G
    Biochem J; 1970 Dec; 120(4):853-8. PubMed ID: 5495157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of cellular amino acids and the Na+ : K+ pump on the membrane potential of the Ehrlich ascites tumor cell.
    Laris PC; Bootman M; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1978 Sep; 512(2):397-414. PubMed ID: 213114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.