These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4726880)

  • 1. The need for a kinetics for biological transport.
    Schindler AM; Iberall AS
    Biophys J; 1973 Aug; 13(8):804-6. PubMed ID: 4726880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion and convective flow across membranes: irreversible the thermodynamic approach.
    Bresler EH; Wendt RP
    Science; 1969 Feb; 163(3870):944-5. PubMed ID: 5763878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Kinetics of bilayer lipid membrane formation].
    Malev VV; Matveeva AI
    Biofizika; 1983; 28(1):50-5. PubMed ID: 6830902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantitative relationships in the theory of active transport].
    Bresler SE
    Mol Biol (Mosk); 1977; 11(2):345-51. PubMed ID: 752780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equations for membrane transport. Experimental and theoretical tests of the frictional model.
    Daneshpajooh MH; Mason EA; Bresler EH; Wendt RP
    Biophys J; 1975 Jun; 15(6):591-613. PubMed ID: 1148361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General continuum analysis of transport through pores. I. Proof of Onsager's reciprocity postulate for uniform pore.
    Levitt DG
    Biophys J; 1975 Jun; 15(6):533-51. PubMed ID: 1148357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic theory, near-continuum model for membrane transport.
    Iberall AS; Schindler AM
    Ann Biomed Eng; 1973 Dec; 1(4):489-97. PubMed ID: 4784161
    [No Abstract]   [Full Text] [Related]  

  • 8. Nonequilibrium voltage fluctuations in biological membranes. I. General framework of charge transport in discrete systems and related voltage noise.
    Frehland E; Solleder P
    Biophys Chem; 1986 Dec; 25(2):135-45. PubMed ID: 3814750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane electrical potential of excitable membranes: a pore analysis influence of surface charges and surface dipoles.
    Gavach C
    J Physiol (Paris); 1981 May; 77(9):1029-33. PubMed ID: 6286954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relation between osmotic flow and tracer solvent diffusion for single-file transport.
    Manning GS
    Biophys Chem; 1975 Apr; 3(2):147-52. PubMed ID: 1148370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potentials and ion permeability in a cation exchange membrane.
    Gunn RB; Curran PF
    Biophys J; 1971 Jul; 11(7):559-71. PubMed ID: 5089914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric charge distributions in planar bilayer systems.
    McQuarrie DA; Mulás P
    Biophys J; 1977 Feb; 17(2):103-9. PubMed ID: 836930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuum mechanical approach to the flow equations for membrane transport. I. Water flow.
    Mikulecky DC
    Biophys J; 1972 Dec; 12(12):1642-60. PubMed ID: 4655664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton transport across charged membrane and pH oscillations.
    Chay TR
    Biophys J; 1980 Apr; 30(1):99-118. PubMed ID: 7260272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modelling of coupled transport across biological membranes.
    Korla K; Mitra CK
    Indian J Biochem Biophys; 2014 Apr; 51(2):93-9. PubMed ID: 24980012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative effects in models of steady-state transport across membranes. IV. One-site, two-site, and multisite models.
    Hill TL; Chen YD
    Biophys J; 1971 Sep; 11(9):685-710. PubMed ID: 5132496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations.
    Marrink SJ; Jähnig F; Berendsen HJ
    Biophys J; 1996 Aug; 71(2):632-47. PubMed ID: 8842203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restricted transport in small pores. A model for steric exclusion and hindered particle motion.
    Anderson JL; Quinn JA
    Biophys J; 1974 Feb; 14(2):130-50. PubMed ID: 4813157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal diffusion as a mechanism for biological transport.
    Bonner FJ; Sundelöf LO
    Z Naturforsch C Biosci; 1984 Jun; 39(6):656-61. PubMed ID: 6485514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.