BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 472734)

  • 1. Regrowth of severed axons in the neonatal central nervous system: establishment of normal connections.
    Kalil K; Reh T
    Science; 1979 Sep; 205(4411):1158-61. PubMed ID: 472734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A light and electron microscopic study of regrowing pyramidal tract fibers.
    Kalil K; Reh T
    J Comp Neurol; 1982 Nov; 211(3):265-75. PubMed ID: 7174894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional role of regrowing pyramidal tract fibers.
    Reh T; Kalil K
    J Comp Neurol; 1982 Nov; 211(3):276-83. PubMed ID: 6294149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infant lesion effect: III. Anatomical correlates of sparing and recovery of function after spinal cord damage in newborn and adult cats.
    Bregman BS; Goldberger ME
    Brain Res; 1983 Aug; 285(2):137-54. PubMed ID: 6616261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redirected growth of pyramidal tract axons following neonatal pyramidotomy in cats.
    Tolbert DL; Der T
    J Comp Neurol; 1987 Jun; 260(2):299-311. PubMed ID: 3611406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the pyramidal tract in the hamster. I. A light microscopic study.
    Reh T; Kalil K
    J Comp Neurol; 1981 Jul; 200(1):55-67. PubMed ID: 7251945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system.
    Sundaresan V; Mambetisaeva E; Andrews W; Annan A; Knöll B; Tear G; Bannister L
    J Comp Neurol; 2004 Jan; 468(4):467-81. PubMed ID: 14689480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord.
    Kuang RZ; Kalil K
    J Comp Neurol; 1990 Dec; 302(3):461-72. PubMed ID: 1702111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the corticospinal tract in the mouse spinal cord: a quantitative ultrastructural analysis.
    Hsu JY; Stein SA; Xu XM
    Brain Res; 2006 Apr; 1084(1):16-27. PubMed ID: 16616050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increases in collateral axonal growth rostral to a thoracic hemisection in neonatal and weanling rat.
    Prendergast J; Stelzner DJ
    J Comp Neurol; 1976 Mar; 166(2):145-61. PubMed ID: 1262552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down.
    Willenberg R; Zukor K; Liu K; He Z; Steward O
    J Comp Neurol; 2016 Sep; 524(13):2654-76. PubMed ID: 26878190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts.
    Kalil K; Skene JH
    J Neurosci; 1986 Sep; 6(9):2563-70. PubMed ID: 3746423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates.
    Kubasak MD; Hedlund E; Roy RR; Carpenter EM; Edgerton VR; Phelps PE
    Exp Neurol; 2005 Aug; 194(2):363-75. PubMed ID: 16022864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function.
    Blits B; Dijkhuizen PA; Boer GJ; Verhaagen J
    Exp Neurol; 2000 Jul; 164(1):25-37. PubMed ID: 10877912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the spinocerebellar system in the postnatal rat.
    Arsénio Nunes ML; Sotelo C
    J Comp Neurol; 1985 Jul; 237(3):291-306. PubMed ID: 3840179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Regrowth of central respiratory pathways in neural graft. From research tool on the axonal regeneration to a strategy of post-traumatic reparation].
    Gauthier P; Decherchi P
    C R Seances Soc Biol Fil; 1997; 191(5-6):695-716. PubMed ID: 9587480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Models of spinal cord regeneration.
    Martin GF; Ghooray GT; Wang XM; Xu XM; Zou XC
    Prog Brain Res; 1994; 103():175-201. PubMed ID: 7886204
    [No Abstract]   [Full Text] [Related]  

  • 20. Attempts to facilitate dorsal column axonal regeneration in a neonatal spinal environment.
    Dent LJ; McCasland JS; Stelzner DJ
    J Comp Neurol; 1996 Aug; 372(3):435-56. PubMed ID: 8873870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.