These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4730326)

  • 1. Nuclear magnetic resonance study of the binding of phosphoenolpyruvate and phosphoenol-alpha-ketobutyrate to manganese pyruvate kinase. Temperature, frequency,and monovalent cation dependence of water proton nuclear magnetic resonance relaxation rates.
    James TL; Reuben J; Cohn M
    J Biol Chem; 1973 Sep; 248(18):6443-9. PubMed ID: 4730326
    [No Abstract]   [Full Text] [Related]  

  • 2. Monomethylammonium ion as a magnetic resonance probe for monovalent cation activators. The monovalent cation in pyruvate kinase catalysis.
    Nowak T
    J Biol Chem; 1973 Oct; 248(20):7191-6. PubMed ID: 4743520
    [No Abstract]   [Full Text] [Related]  

  • 3. Magnetic resonance studies of manganese (II) binding sites of pyruvate kinase. Temperature effects and frequency dependence of proton relaxation rates of water.
    Reuben J; Cohn M
    J Biol Chem; 1970 Dec; 245(24):6539-46. PubMed ID: 4320606
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural aspects of manganese-pyruvate kinase substrate and inhibitor complexes deduced from proton magnetic relaxation rates of pyruvate and a phosphoenolpyruvate analog.
    James TL; Cohn M
    J Biol Chem; 1974 Jun; 249(11):3519-26. PubMed ID: 4831226
    [No Abstract]   [Full Text] [Related]  

  • 5. A multinuclear nuclear magnetic resonance study of the monovalent-divalent cation sites of pyruvate kinase.
    Raushel FM; Villafranca JJ
    Biochemistry; 1980 Nov; 19(24):5481-5. PubMed ID: 7193048
    [No Abstract]   [Full Text] [Related]  

  • 6. Lithium-7 nuclear magnetic resonance as a probe of structure and function of the monovalent cation site on pyruvate kinase.
    Hutton WC; Stephens EM; Grisham CM
    Arch Biochem Biophys; 1977 Nov; 184(1):166-71. PubMed ID: 921290
    [No Abstract]   [Full Text] [Related]  

  • 7. Nuclear magnetic resonance study of the complexes of manganese(II) and fully adenylated glutamine synthetase (Escherichia coli W). Frequency, temperature, and substrate dependence of water proton relaxation rates.
    Villafranca JJ; Wedler FC
    Biochemistry; 1974 Jul; 13(16):3286-91. PubMed ID: 4152181
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic and magnetic resonance studies of the interaction of oxalate with pyruvate kinase.
    Reed GH; Morgan SD
    Biochemistry; 1974 Aug; 13(17):3537-41. PubMed ID: 4367426
    [No Abstract]   [Full Text] [Related]  

  • 9. Magnetic resonance studies of the interaction of Co2+ and phosphoenolpyruvate with pyruvate kinase.
    Melamud E; Mildvan AS
    J Biol Chem; 1975 Oct; 250(20):8193-201. PubMed ID: 1236850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron paramagnetic resonance studies of manganese (II)-pyruvate kinase-substrate complexes.
    Reed GH; Cohn M
    J Biol Chem; 1973 Sep; 248(18):6436-42. PubMed ID: 4354210
    [No Abstract]   [Full Text] [Related]  

  • 11. Proton relaxation and kinetic studies of ternary complexes of an allosteric pyruvate kinase from yeast.
    Cottam GL; Mildvan AS; Hunsley JR; Suelter CH
    J Biol Chem; 1972 Jun; 247(12):3802-9. PubMed ID: 4555950
    [No Abstract]   [Full Text] [Related]  

  • 12. Nuclear magnetic resonance studies of selectively hindered internal motion of substrate analogs at the active site of pyruvate kinase.
    Nowak T; Mildvan AS
    Biochemistry; 1972 Jul; 11(15):2813-8. PubMed ID: 4625313
    [No Abstract]   [Full Text] [Related]  

  • 13. Nuclear magnetic relaxation studies of the conformation of adenosine 5'-triphosphate on pyruvate kinase from rabbit muscle.
    Sloan DL; Mildvan AS
    J Biol Chem; 1976 Apr; 251(8):2412-20. PubMed ID: 177414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear relaxation studies of the role of the divalent cation in the mechanism of pyruvate kinase and enolase: inner sphere and second sphere complexes.
    Mildvan AS; Nowak T; Fung CH
    Ann N Y Acad Sci; 1973 Dec; 222():192-210. PubMed ID: 4522427
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural changes at the active site of pyruvate kinase during activation and catalysis.
    Nowak T
    J Biol Chem; 1978 Mar; 253(6):1998-2004. PubMed ID: 564901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H and 31P relaxation rate studies of the interaction of phosphoenolpyruvate and its analogues with avian phosphoenolpyruvate carboxykinase.
    Duffy TH; Nowak T
    Biochemistry; 1985 Feb; 24(5):1152-60. PubMed ID: 4096895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes required for pyruvate kinase activity as modulated by monovalent cations.
    Nowak T
    J Biol Chem; 1976 Jan; 251(1):73-8. PubMed ID: 172512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates. Evidence for a substrate-induced conformational change.
    Reuben J; Kayne FJ
    J Biol Chem; 1971 Oct; 246(20):6227-34. PubMed ID: 5127427
    [No Abstract]   [Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies of the function of potassium in the mechanism of pyruvate kinase.
    Nowak T; Mildvan AS
    Biochemistry; 1972 Jul; 11(15):2819-28. PubMed ID: 5064959
    [No Abstract]   [Full Text] [Related]  

  • 20. Proton-relaxation-enhancement studies on the binding to yeast pyruvate kinase of a substrate and effectors.
    Fell DA; Peacocke AR; Dwek RA
    Eur J Biochem; 1972 Aug; 29(1):128-33. PubMed ID: 4343297
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.