These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 4730477)

  • 1. Specific inhibition of alkane synthesis with accumulation of very long chain compounds by dithioerythritol, dithiothreitol, and mercaptoethanol in Pisum sativum.
    Buckner JS; Kolattukudy PE
    Arch Biochem Biophys; 1973 May; 156(1):34-45. PubMed ID: 4730477
    [No Abstract]   [Full Text] [Related]  

  • 2. Chain elongation of fatty acids by cell-free extracts of epidermis from pea leaves (pisum sativum).
    Kolattukudy PE; Buckner JS
    Biochem Biophys Res Commun; 1972 Jan; 46(2):801-7. PubMed ID: 4400442
    [No Abstract]   [Full Text] [Related]  

  • 3. Biosynthesis of a lipid polymer, cutin: the structural component of plant cuticle.
    Kolattukudy PE
    Biochem Biophys Res Commun; 1970 Oct; 41(2):299-305. PubMed ID: 5518162
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of alkyl glyceryl ethers and their noninvolvement in alkane biosynthesis in plants.
    Kolattukudy PE; Walton TJ
    Arch Biochem Biophys; 1972 May; 150(1):310-7. PubMed ID: 5028078
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on alkane biosynthesis in epidermis of Allium porrum L. leaves. Direct synthesis of tricosane from lignoceric acid.
    Cassagne C; Lessire R
    Arch Biochem Biophys; 1974 Nov; 165(1):274-80. PubMed ID: 4441076
    [No Abstract]   [Full Text] [Related]  

  • 6. The inhibition of unsaturated fatty acid biosynthesis in plants by sterculic acid.
    James AT; Harris P; Bezard J
    Eur J Biochem; 1968 Jan; 3(3):318-25. PubMed ID: 5645527
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure and biosynthesis of diesters of alkane-2,3-diols of the uropygial glands of ring-necked pheasants.
    Sawaya WN; Kolattukudy PE
    Biochemistry; 1972 Nov; 11(23):4398-406. PubMed ID: 5079903
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure and biosynthesis of the hydroxy fatty acids of cutin in Vicia faba leaves.
    Kolattukudy PE; Walton TJ
    Biochemistry; 1972 May; 11(10):1897-907. PubMed ID: 5025632
    [No Abstract]   [Full Text] [Related]  

  • 9. The formation of fatty acyl thioesters during 14 C-1-acetate incorporation into long chain fatty acids by isolated spinach chloroplasts.
    Kannangara CG; Stumpf PK
    Biochem Biophys Res Commun; 1971 Sep; 44(6):1544-51. PubMed ID: 5160713
    [No Abstract]   [Full Text] [Related]  

  • 10. Biosynthesis of beta-diketones and hydrocarbons in barley spike epicuticular wax.
    Mikkelsen JD; von Wettstein-Knowles P
    Arch Biochem Biophys; 1978 May; 188(1):172-81. PubMed ID: 677890
    [No Abstract]   [Full Text] [Related]  

  • 11. In vitro fatty acid and lipid biosynthesis during development of insects.
    Municio AM; Odriozola JM; PiƱeiro A; Ribera A
    Biochim Biophys Acta; 1971 Nov; 248(2):212-25. PubMed ID: 5130454
    [No Abstract]   [Full Text] [Related]  

  • 12. [A new pathway for oleic acid biosynthesis in plants].
    Mazliak P; Decotte AM
    Biochimie; 1973; 55(11):1481-9. PubMed ID: 4790853
    [No Abstract]   [Full Text] [Related]  

  • 13. Preparation of 14C-labeled fatty and anacardic acids from Ginkgo biloba.
    Gellerman JL; Schlenk H
    Lipids; 1969 Nov; 4(6):484-7. PubMed ID: 5367931
    [No Abstract]   [Full Text] [Related]  

  • 14. Fat metabolism in higher plants. The nonenzymatic acylation of dithiothreitol by acyl coenzyme A.
    Stokes GB; Stumpf PK
    Arch Biochem Biophys; 1974 Jun; 162(2):638-48. PubMed ID: 4407151
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis of alkyl glycerol lipids in the intestinal mucosa in vivo and in a cell-free system.
    Paltauf F
    Biochim Biophys Acta; 1972 Mar; 260(3):345-51. PubMed ID: 5038254
    [No Abstract]   [Full Text] [Related]  

  • 16. Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis.
    Kolattukudy PE
    Biochemistry; 1970 Mar; 9(5):1095-102. PubMed ID: 4313936
    [No Abstract]   [Full Text] [Related]  

  • 17. Direct evidence for a decarboxylation mechanism in the biosynthesis of alkanes in B. oleracea.
    Kolattukudy PE; Buckner JS; Brown L
    Biochem Biophys Res Commun; 1972 Jun; 47(6):1306-13. PubMed ID: 5040236
    [No Abstract]   [Full Text] [Related]  

  • 18. Lipogenesis in bovine mammary cells: progressive changes with age in culture.
    Kinsella JE
    Biochim Biophys Acta; 1972 Jul; 270(3):296-300. PubMed ID: 5064926
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of synthesis and distribution of acyl moieties in etiolated Euglena gracilis.
    Khan AA; Kolattukudy PE
    Biochemistry; 1973 May; 12(10):1939-48. PubMed ID: 4634163
    [No Abstract]   [Full Text] [Related]  

  • 20. Biosynthesis of secondary alcohols and ketones from alkanes.
    Kolattukudy PE; Buckner JS; Liu TY
    Arch Biochem Biophys; 1973 Jun; 156(2):613-20. PubMed ID: 4718785
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.