These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Ultrasonic recording of the vibrating vocal folds. A preliminary report. Hertz CH; Lindström K; Sonesson B Acta Otolaryngol Suppl; 1969; 263():56-9. PubMed ID: 5269060 [No Abstract] [Full Text] [Related]
6. Ultrasonic recording of the vibrating vocal folds. A preliminary report. Hertz CH; Lindström K; Sonesson B Acta Otolaryngol; 1970 Mar; 69(3):223-30. PubMed ID: 5430672 [No Abstract] [Full Text] [Related]
7. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. Sidlof P; Svec JG; Horácek J; Veselý J; Klepácek I; Havlík R J Biomech; 2008; 41(5):985-95. PubMed ID: 18289553 [TBL] [Abstract][Full Text] [Related]
8. Location of slope discontinuities in glottal pulse shapes during vocal fry. Hamlet SL J Acoust Soc Am; 1971 Dec; 50(6):1561-2. PubMed ID: 5128786 [No Abstract] [Full Text] [Related]
9. [Mechanical properties of the vocal fold in excised human larynges--resonance characteristics by a single rectangular pulse excitation]. Numata T Nihon Jibiinkoka Gakkai Kaiho; 1985 Jul; 88(7):853-67. PubMed ID: 4056954 [No Abstract] [Full Text] [Related]
10. Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges. Ouaknine M; Garrel R; Giovanni A Folia Phoniatr Logop; 2003; 55(1):28-38. PubMed ID: 12566764 [TBL] [Abstract][Full Text] [Related]
11. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges. Kataoka K; Kitajima K Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847 [TBL] [Abstract][Full Text] [Related]
12. Adaptations for phonatory efficiency in the human vocal folds. FINK BR Ann Otol Rhinol Laryngol; 1962 Mar; 71():79-85. PubMed ID: 13892967 [No Abstract] [Full Text] [Related]
13. Glottography, the electrophysiological investigation of phonatory biomechanics. Kitzing P Acta Otorhinolaryngol Belg; 1986; 40(6):863-78. PubMed ID: 3551483 [TBL] [Abstract][Full Text] [Related]
14. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx. Slavit DH; McCaffrey TV Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519 [TBL] [Abstract][Full Text] [Related]
15. Vibratory Dynamics of Four Types of Excised Larynx Phonations. Li L; Zhang Y; Calawerts W; Jiang JJ J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848 [TBL] [Abstract][Full Text] [Related]
16. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices. Lagier A; Guenoun D; Legou T; Espesser R; Giovanni A; Champsaur P Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801 [TBL] [Abstract][Full Text] [Related]
17. An aerodynamic study of stops in Sindhi. Nihalani P Phonetica; 1974; 29(4):193-224. PubMed ID: 4841932 [No Abstract] [Full Text] [Related]
18. Calibration of high-speed imaging by laser triangulation. Larsson H; Hertegård S Logoped Phoniatr Vocol; 2004; 29(4):154-61. PubMed ID: 15764209 [TBL] [Abstract][Full Text] [Related]
19. Ultrasonic Doppler monitoring of vocal-fold velocity and displacement. Beach JL; Kelsey CA J Acoust Soc Am; 1969 Oct; 46(4):1045-7. PubMed ID: 5824027 [No Abstract] [Full Text] [Related]
20. A methodological study of hemilaryngeal phonation. Jiang JJ; Titze IR Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]