These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 4732933)
1. Three models of the vibrating ulna. Jurist JM; Kianian K J Biomech; 1973 Jul; 6(4):331-42. PubMed ID: 4732933 [No Abstract] [Full Text] [Related]
2. Some considerations on vibrational mathematical models of the ulna. Maurizi MJ; Laura PA J Biomed Eng; 1989 Sep; 11(5):413-5. PubMed ID: 2796322 [TBL] [Abstract][Full Text] [Related]
4. In vivo determination of mechanical properties of the human ulna by means of mechanical impedance tests: experimental results and improved mathematical model. Young DR; Thompson GA; Orne D Med Biol Eng; 1976 May; 14(3):253-62. PubMed ID: 940384 [No Abstract] [Full Text] [Related]
5. The in vivo, driving-point impedance of the human ulna--a viscoelastic beam model. Orne D J Biomech; 1974 May; 7(3):249-57. PubMed ID: 4844331 [No Abstract] [Full Text] [Related]
6. Some notes on the biomechanics of the equine antebrachium. Badoux DM Z Anat Entwicklungsgesch; 1974; 144(2):215-25. PubMed ID: 4415832 [No Abstract] [Full Text] [Related]
7. A technique for joint center analysis using a stored program calculator. Dimnet J; Carret JP; Gonon G; Fischer LP J Biomech; 1976; 9(12):771-8. PubMed ID: 1022789 [No Abstract] [Full Text] [Related]
8. Vibratory properties and resonances of the isolated human ulna. Evans EJ J Biomed Eng; 1985 Apr; 7(2):144-8. PubMed ID: 3999725 [TBL] [Abstract][Full Text] [Related]
9. The influence of musculature on the mechanical impedance of the human ulna, an in vivo simulated study. Orne D; Mandke J J Biomech; 1975 Mar; 8(2):143-9. PubMed ID: 807582 [No Abstract] [Full Text] [Related]
10. In vivo determination of the elastic response of bone. I. Method of ulnar resonant frequency determination. Jurist JM Phys Med Biol; 1970 Jul; 15(3):417-26. PubMed ID: 5485452 [No Abstract] [Full Text] [Related]
13. In vivo determination of the elastic response of bone. II. Ulnar resonant frequency in osteoporotic, diabetic and normal subjects. Jurist JM Phys Med Biol; 1970 Jul; 15(3):427-34. PubMed ID: 5485453 [No Abstract] [Full Text] [Related]
14. A simple method for the determination of the fundamental frequency of vibration of bones. Laura PA; Cortinez VH; Ercoli L; Rossi RE Med Eng Phys; 1994 Sep; 16(5):422-4. PubMed ID: 7952681 [TBL] [Abstract][Full Text] [Related]
15. [High frequency vibrations of human hollow bone (author's transl)]. Christmann C Anat Anz; 1977; 142(1-2):77-9. PubMed ID: 596647 [TBL] [Abstract][Full Text] [Related]
16. Structural mechanics of the mitral valve: stresses sustained by the valve; non-traumatic determination of the stiffness of the in vivo valve. Ghista DN; Rao AP J Biomech; 1972 May; 5(3):295-307. PubMed ID: 4666534 [No Abstract] [Full Text] [Related]
17. The comparison of density-elastic modulus equations for the distal ulna at multiple forearm positions: a finite element study. Neuert MA; Austman RL; Dunning CE Acta Bioeng Biomech; 2013; 15(3):37-43. PubMed ID: 24215389 [TBL] [Abstract][Full Text] [Related]
18. [Sound wave velocity, wave length and elasticity module of human medullated bones]. Ehler E; Christmann C Beitr Orthop Traumatol; 1971; 18(2):95-9. PubMed ID: 5575613 [No Abstract] [Full Text] [Related]
19. A biomechanical investigation of wrist kinematics. Andrews JG; Youm Y J Biomech; 1979; 12(1):83-93. PubMed ID: 762184 [No Abstract] [Full Text] [Related]
20. Mechanical properties of bone as a function of rate of deformation. Panjabi MM; White AA; Southwick WO J Bone Joint Surg Am; 1973 Mar; 55(2):322-30. PubMed ID: 4696163 [No Abstract] [Full Text] [Related] [Next] [New Search]