These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 4734444)

  • 1. Work-induced potassium changes in muscle venous effluent blood measured by ion-specific electrodes.
    Hník P; Kríz N; Vyskocil F; Smiesko V; Mejsnar J; Ujec E; Holas M
    Pflugers Arch; 1973 Jan; 338(2):177-81. PubMed ID: 4734444
    [No Abstract]   [Full Text] [Related]  

  • 2. Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes.
    Hník P; Holas M; Krekule I; Kŭriz N; Mejsnar J; Smiesko V; Ujec E; Vyskocil F
    Pflugers Arch; 1976 Mar; 362(1):85-94. PubMed ID: 943782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Work-induced increase of extracellular potassium concentration in muscle measured by ion-specific electrodes.
    Hnik P; Vyskocil F; Kriz N; Holas M
    Brain Res; 1972 May; 40(2):559-62. PubMed ID: 5027178
    [No Abstract]   [Full Text] [Related]  

  • 4. [Changes of the extracellular potassium in the muscle and venous blood during effort and their physiological importance].
    Hník P; Holas M; Krekule I; Kríz N; Mejsnar J; Smiesko V; Ujec E; Vyskocil F; Csav F
    Cesk Fysiol; 1975; 24(6):515-7. PubMed ID: 1204053
    [No Abstract]   [Full Text] [Related]  

  • 5. [Measurement of K + and Na + activity in the extracellular space of rabbit skeletal muscle during muscular work by means of glass microelectrodes].
    Gebert G
    Pflugers Arch; 1972; 331(3):204-14. PubMed ID: 5063521
    [No Abstract]   [Full Text] [Related]  

  • 6. Proceedings: Changes in potassium concentration in muscle and venous effluent blood induced by muscle activity.
    Hník P; Kríz N; Vyskocil F; Holas M; Ujec E; Mejsnar J; Smiesko V
    Act Nerv Super (Praha); 1974; 16(4):306-7. PubMed ID: 4451015
    [No Abstract]   [Full Text] [Related]  

  • 7. Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat.
    ten Bruggencate G; Lux HD; Liebl L
    Pflugers Arch; 1974; 349(4):301-17. PubMed ID: 4472242
    [No Abstract]   [Full Text] [Related]  

  • 8. Evoked and spontaneous extracellular potassium shifts in the cerebral cortex of unanaesthetized cats.
    Molnár M; Skinner JE
    Acta Physiol Hung; 1983; 61(4):265-79. PubMed ID: 6316727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+ fluctuations in the extracellular spaces of cardiac muscle. Evidence from the voltage clamp and extracellular K+ - selective microelectrodes.
    Cohen I; Kline R
    Circ Res; 1982 Jan; 50(1):1-16. PubMed ID: 6274541
    [No Abstract]   [Full Text] [Related]  

  • 10. Extracellular potassium in the mammalian central nervous system.
    Somjen GG
    Annu Rev Physiol; 1979; 41():159-77. PubMed ID: 373587
    [No Abstract]   [Full Text] [Related]  

  • 11. Extracellular accumulation of K+ evoked by activity of primary afferent fibers in the cuneate nucleus and dorsal horn of cats.
    Krnjević K; Morris ME
    Can J Physiol Pharmacol; 1974 Aug; 52(4):852-71. PubMed ID: 4425984
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of lanthanum on excitation-contraction coupling in frog skeletal muscle.
    Parry DJ; Kover A; Frank GB
    Can J Physiol Pharmacol; 1974 Dec; 52(6):1126-35. PubMed ID: 4548856
    [No Abstract]   [Full Text] [Related]  

  • 13. Electrophysiologic properties of cardiac muscle in adrenal insufficiency.
    Rovetto MJ; Lefer AM
    Am J Physiol; 1970 Apr; 218(4):1015-9. PubMed ID: 5435397
    [No Abstract]   [Full Text] [Related]  

  • 14. The contribution of local blood flow to the rapid clearance of potassium from the cortical extracellular space.
    Mutsuga N; Schuette WH; Lewis DV
    Brain Res; 1976 Nov; 116(3):431-6. PubMed ID: 974786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further studies on the mediation of functional hyperaemia in skeletal muscle.
    Hilton SM; Hudlicka O
    J Physiol; 1971 Dec; 219(2):25P-26P. PubMed ID: 5158382
    [No Abstract]   [Full Text] [Related]  

  • 16. Intracellular potassium concentrations and extracellular spaces in rat skeletal muscles immersed in normal, hypotonic and high-K modified Krebs fluid, determined by potassium-selective microelectrodes [proceedings].
    Kernan RP; MacDermott M
    J Physiol; 1976 Dec; 263(1):158P-160P. PubMed ID: 1011119
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of hemorrhagic shock on potassium transport in skeletal muscle.
    Illner H; Shires GT
    Surg Gynecol Obstet; 1980 Jan; 150(1):17-25. PubMed ID: 7350697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The measurement of potassium efflux in superfused frog sartorius muscles.
    Lucier GE; Mainwood GW
    Can J Physiol Pharmacol; 1972 Feb; 50(2):123-31. PubMed ID: 4537128
    [No Abstract]   [Full Text] [Related]  

  • 19. Changes in extracellular potassium during the spontaneous activity of medullary respiratory neurones.
    Richter DW; Camerer H; Sonnhof U
    Pflugers Arch; 1978 Sep; 376(2):139-49. PubMed ID: 568771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intact muscle preparation suitable for studies of the metabolic effects of electrical stimulation.
    Fern EB; Pain VM; Manchester KL
    Biochem J; 1971 Jul; 123(4):45P. PubMed ID: 5126903
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.