These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4734864)

  • 1. A thermodynamic analysis of mitotic spindle equilibrium at active metaphase.
    Stephens RE
    J Cell Biol; 1973 Apr; 57(1):133-47. PubMed ID: 4734864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement.
    Inoué S; Sato H
    J Gen Physiol; 1967 Jul; 50(6):Suppl:259-92. PubMed ID: 6058222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system.
    Inoué S; Fuseler J; Salmon ED; Ellis GW
    Biophys J; 1975 Jul; 15(7):725-44. PubMed ID: 1139037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intracellular pH on the mitotic apparatus and mitotic stage in the sand dollar egg.
    Watanabe K; Hamaguchi MS; Hamaguchi Y
    Cell Motil Cytoskeleton; 1997; 37(3):263-70. PubMed ID: 9227856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative studies on the polarization optical properties of living cells II. The role of microtubules in birefringence of the spindle of the sea urchin egg.
    Hiramoto Y; Hamaguchi Y; Shóji Y; Schroeder TE; Shimoda S; Nakamura S
    J Cell Biol; 1981 Apr; 89(1):121-30. PubMed ID: 7228897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement.
    Salmon ED
    Ann N Y Acad Sci; 1975 Jun; 253():383-406. PubMed ID: 1096721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of heavy water (D2O) on the length of the mitotic period in developing sea urchin eggs.
    Takahashi TC; Sato H
    Cell Struct Funct; 1983 Dec; 8(4):357-65. PubMed ID: 6201297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeine-induced calcium release in sea urchin eggs and the effect of continuous versus pulsed application on the mitotic apparatus.
    Harris PJ
    Dev Biol; 1994 Feb; 161(2):370-8. PubMed ID: 8313989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-induced depolymerization of spindle microtubules. II. Thermodynamics of in vivo spindle assembly.
    Salmon ED
    J Cell Biol; 1975 Jul; 66(1):114-27. PubMed ID: 1170171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivation of isolated mitotic apparatus: metaphase versus anaphase spindles.
    Palazzo RE; Lutz DA; Rebhun LI
    Cell Motil Cytoskeleton; 1991; 18(4):304-18. PubMed ID: 2049791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LOCAL REDUCTION OF SPINDLE FIBER BIREFRINGENCE IN LIVING NEPHROTOMA SUTURALIS (LOEW) SPERMATOCYTES INDUCED BY ULTRAVIOLET MICROBEAM IRRADIATION.
    FORER A
    J Cell Biol; 1965 Apr; 25(1):SUPPL:95-117. PubMed ID: 14342833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PROTEIN SYNTHESIS AND THE MITOTIC APPARATUS.
    MANGAN J; MIKI-NOUMURA T; GROSS PR
    Science; 1965 Mar; 147(3665):1575-8. PubMed ID: 14260372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus.
    Hollenbeck PJ; Cande WZ
    Eur J Cell Biol; 1985 May; 37():140-8. PubMed ID: 3896803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of fluorescently labeled tubulin injected into sand dollar eggs from fertilization through cleavage.
    Hamaguchi Y; Toriyama M; Sakai H; Hiramoto Y
    J Cell Biol; 1985 Apr; 100(4):1262-72. PubMed ID: 3920225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length.
    Salmon ED
    J Cell Biol; 1975 Jun; 65(3):603-14. PubMed ID: 1133117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MAPK pathway is involved in the control of mitosis after fertilization of the sea urchin egg.
    Zhang WL; Huitorel P; Glass R; Fernandez-Serra M; Arnone MI; Chiri S; Picard A; Ciapa B
    Dev Biol; 2005 Jun; 282(1):192-206. PubMed ID: 15936340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-1, a mitotic arrester, alters centrosome configurations in fertilized sea urchin eggs.
    Itoh TJ; Schatten H; Schatten G; Mazia D; Kobayashi A; Sato H
    Cell Motil Cytoskeleton; 1990; 16(2):146-54. PubMed ID: 2198112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitotic apparatus. Structural changes after isolation.
    Kane RE; Forer A
    J Cell Biol; 1965 Jun; 25(3):Suppl:31-9. PubMed ID: 5320473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes.
    Schatten H; Walter M; Mazia D; Biessmann H; Paweletz N; Coffe G; Schatten G
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8488-92. PubMed ID: 3120191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caulerpenyne interferes with microtubule-dependent events during the first mitotic cycle of sea urchin eggs.
    Pesando D; Huitorel P; Dolcini V; Amade P; Girard JP
    Eur J Cell Biol; 1998 Sep; 77(1):19-26. PubMed ID: 9808285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.