BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4735092)

  • 1. The denaturation by urea and guanidinium chloride of trypsin and N-acetylated-trypsin derivatives bound to Sephadex and agarose.
    Gabel D
    Eur J Biochem; 1973 Mar; 33(2):348-56. PubMed ID: 4735092
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence.
    Gabel D; Steinberg IZ; Katchalski E
    Biochemistry; 1971 Dec; 10(25):4661-9. PubMed ID: 5140184
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of urea and guanidine-HCl on the folding and unfolding of pancreatic trypsin inhibitor.
    Creighton TE
    J Mol Biol; 1977 Jun; 113(2):313-28. PubMed ID: 886612
    [No Abstract]   [Full Text] [Related]  

  • 4. Resistance of soybean trypsin inhibitor (Kunitz) to denaturation by guanidinium chloride.
    Leach BS; Fish WW
    J Biol Chem; 1977 Aug; 252(15):5239-43. PubMed ID: 885848
    [No Abstract]   [Full Text] [Related]  

  • 5. Renaturation of formyltetrahydrofolate synthetase from urea and guanidinium chloride solutions.
    Garrison CK; Harmony JA; Himes RH
    Biochim Biophys Acta; 1976 Sep; 446(1):301-9. PubMed ID: 974116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sepharose-bound trypsin and activated sepharose-bound trypsinogen. Studies with small and large substrates.
    Knights RJ; Light A
    Arch Biochem Biophys; 1974 Feb; 160(2):277-86. PubMed ID: 4831618
    [No Abstract]   [Full Text] [Related]  

  • 7. Luminescence of the tryptophan and tyrosine residues of trypsin.
    Arrio B; Hill M; Parquet C
    Biochimie; 1973; 55(3):283-9. PubMed ID: 4744742
    [No Abstract]   [Full Text] [Related]  

  • 8. Immobilization of protocatechuate 3,4 -dioxygenase with activated agarose.
    Zaborsky OR; Ogletree J
    Biochim Biophys Acta; 1972 Nov; 289(1):68-76. PubMed ID: 5086950
    [No Abstract]   [Full Text] [Related]  

  • 9. Erythrina caffra trypsin inhibitor retains its native structure and function after reducing its disulfide bonds.
    Lehle K; Wrba A; Jaenicke R
    J Mol Biol; 1994 Jun; 239(2):276-84. PubMed ID: 8196058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of action of proteolytic inhibitors. IV. Effect of 8 M urea on the stability of trypsin in trypsin-inhibitor complexes.
    Levilliers N; PĂ©ron M; Arrio B; Pudles J
    Arch Biochem Biophys; 1970 Oct; 140(2):474-83. PubMed ID: 5528741
    [No Abstract]   [Full Text] [Related]  

  • 11. Proton Fourier transform NMR studies of the unfolding of ribonuclease.
    Roberts GC; Benz FW
    Ann N Y Acad Sci; 1973 Dec; 222():130-48. PubMed ID: 4522425
    [No Abstract]   [Full Text] [Related]  

  • 12. Preparation and characterization of a dextran-trypsin conjugate.
    Marshall JJ; Rabinowitz ML
    J Biol Chem; 1976 Feb; 251(4):1081-7. PubMed ID: 942952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of compounds of the urea-guanidinium class on renaturation and thermal stability of acid-soluble collagen.
    Russell AE; Cooper DR
    Biochem J; 1972 May; 127(5):855-63. PubMed ID: 4672803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of agarose-bound trypsin.
    Walter B
    Biochim Biophys Acta; 1976 May; 429(3):950-3. PubMed ID: 1268234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypsinogen, trypsin, trypsin-substrate and trypsin-inhibitor complexes in urea solutions.
    Delaage M; Lazdunski M
    Eur J Biochem; 1968 Apr; 4(3):378-84. PubMed ID: 5690131
    [No Abstract]   [Full Text] [Related]  

  • 16. Interaction with DNA of the acetylated and non-acetylated polyvalent basic trypsin inhibitor of the Kunitz type.
    Szopa J
    Acta Biochim Pol; 1974; 21(2):151-7. PubMed ID: 4859368
    [No Abstract]   [Full Text] [Related]  

  • 17. The synthesis and properties of the sepharose-bound tRNA nucleotidyltransferase.
    Litvak S; Tarrago-Litvak L; Carre DS; Chapeville F
    Eur J Biochem; 1971 Dec; 24(2):249-51. PubMed ID: 5157295
    [No Abstract]   [Full Text] [Related]  

  • 18. Separation of the two non-identical subunits of lombricine kinase from Lumbricus terrestris muscle by chromatography on sepharose-mercurial. Isolation of the tryptic peptide containing its essential thiol group.
    Terrossian E der ; Pradel LA; Kassab R; Desvages G
    Eur J Biochem; 1974 Jun; 45(1):243-51. PubMed ID: 4371506
    [No Abstract]   [Full Text] [Related]  

  • 19. Refolding of reduced, denatured trypsinogen and trypsin immobilized on Agarose beads.
    Sinha NK; Light A
    J Biol Chem; 1975 Nov; 250(22):8624-9. PubMed ID: 241750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation during denaturation of ribonuclease A by guanidinium chloride is accompanied by unfolding at the active site.
    Yang HJ; Tsou CL
    Biochem J; 1995 Jan; 305 ( Pt 2)(Pt 2):379-84. PubMed ID: 7832749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.