These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. [Functional characteristics of skeletal muscle fibers developing in vitro]. Itina NA Usp Fiziol Nauk; 1976; 7(2):69-87. PubMed ID: 779313 [No Abstract] [Full Text] [Related]
6. [Relations between polarization level and separate components of active potential in skeletal muscle fibers]. Nakhodkina LG Fiziol Zh SSSR Im I M Sechenova; 1969 May; 55(5):576-82. PubMed ID: 5359983 [No Abstract] [Full Text] [Related]
7. Tetrodotoxin-resistant electric activity in chick skeletal muscle cells differentiated in vitro. Kano M; Shimada Y J Cell Physiol; 1973 Feb; 81(1):85-9. PubMed ID: 4734418 [No Abstract] [Full Text] [Related]
8. The cholinergic receptor in skeletal muscle. In: Molecular properties of drug receptors. Thesleff S Ciba Found Symp; 1970; ():33-42. PubMed ID: 5210925 [No Abstract] [Full Text] [Related]
10. Nicotine-induced depolarization and stimulation of potassium efflux in striated muscle. Henderson EG; Hancock JC J Pharmacol Exp Ther; 1971 May; 177(2):377-88. PubMed ID: 5568794 [No Abstract] [Full Text] [Related]
11. Responses of neuroblastoma cells to iontophoretically applied acetylcholine. Nelson PG; Peacock JH; Amano T J Cell Physiol; 1971 Jun; 77(3):353-62. PubMed ID: 5104785 [No Abstract] [Full Text] [Related]
12. Electrophysiological study of chick myotubes grown in tissue culture. Marshall MW; Wilson P J Physiol; 1973 Feb; 229(1):27P-28P. PubMed ID: 4734743 [No Abstract] [Full Text] [Related]
13. Early effects in vitro of the muscular dysgenesis mutation on nervous tissue in the mouse. Wieczorek DF Muscle Nerve; 1984; 7(3):179-93. PubMed ID: 6708964 [TBL] [Abstract][Full Text] [Related]
14. Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal alpha ryanodine receptor and exhibit a partial mutant phenotype. Airey JA; Deerinck TJ; Ellisman MH; Houenou LJ; Ivanenko A; Kenyon JL; McKemy DD; Sutko JL Dev Dyn; 1993 Jul; 197(3):189-202. PubMed ID: 8219360 [TBL] [Abstract][Full Text] [Related]
15. The neurotrophic regulation of resting membrane potential and extrajunctional acetylcholine sensitivity in mammalian skeletal muscle. Guth L; Albuquerque EX Physiol Bohemoslov; 1978; 27(5):401-14. PubMed ID: 216042 [No Abstract] [Full Text] [Related]
16. Physiological and structural properties of colchicine-treated chick skeletal muscle cells grown in tissue culture. Fukuda J; Henkart MP; Fischbach GD; Smith TG Dev Biol; 1976 Apr; 49(2):395-411. PubMed ID: 1269814 [No Abstract] [Full Text] [Related]
17. Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture. Cohen SA; Fischbach GD Science; 1973 Jul; 181(4094):76-8. PubMed ID: 4736607 [TBL] [Abstract][Full Text] [Related]
18. Use-dependent block of sodium channels by verapamil in skeletal muscle during repetitive stimulation. Frank GB; Oz M Proc West Pharmacol Soc; 1991; 34():409-12. PubMed ID: 1664961 [No Abstract] [Full Text] [Related]
19. [The effect of membrane hyperpolarization on novocainized skeletal muscle fibers]. Vornovitskiĭ EG; Khodorov BI Biull Eksp Biol Med; 1967 Sep; 64(9):3-6. PubMed ID: 5622430 [No Abstract] [Full Text] [Related]
20. The pharmacology of batrachotoxin. IV. Interaction with tetrodotoxin on innervated and chronically denervated rat skeletal muscle. Albuquerque EX; Warnick JE J Pharmacol Exp Ther; 1972 Mar; 180(3):683-97. PubMed ID: 5012787 [No Abstract] [Full Text] [Related] [Next] [New Search]