These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4740801)

  • 1. [Biochemical dehydrogenations of saccharides. 6. Notes on the dehydrogenation of L-arabitol by Acetobacter xylinum and on Bertrand's rule].
    Kulhánek M; Tadra M
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1973; 128(1):25-30. PubMed ID: 4740801
    [No Abstract]   [Full Text] [Related]  

  • 2. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor.
    Bae SO; Shoda M
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):45-51. PubMed ID: 15338079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products.
    Kongruang S
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):245-56. PubMed ID: 18418756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum.
    Noro N; Sugano Y; Shoda M
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):199-205. PubMed ID: 14564490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers.
    Lee JW; Deng F; Yeomans WG; Allen AL; Gross RA; Kaplan DL
    Appl Environ Microbiol; 2001 Sep; 67(9):3970-5. PubMed ID: 11525993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of water-soluble polysaccharides in bacterial cellulose production.
    Ishida T; Mitarai M; Sugano Y; Shoda M
    Biotechnol Bioeng; 2003 Aug; 83(4):474-8. PubMed ID: 12800141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The induction of birefringence in pellicles of bacterial cellulose from Acetobacter xylinum by lipids.
    Carson JH; Sowden LC; Colvin JR
    Can J Microbiol; 1967 Jul; 13(7):837-44. PubMed ID: 6036888
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis of mannosyl cellobiose diphosphate prenol in Acetobacter xylinum.
    Couso RO; Ielpi L; García RC; Dankert MA
    Arch Biochem Biophys; 1980 Oct; 204(2):435-43. PubMed ID: 6160815
    [No Abstract]   [Full Text] [Related]  

  • 9. Permeability of pea chloroplasts to alcohols and aldoses as measured by reflection coefficients.
    Wang CT; Nobel PS
    Biochim Biophys Acta; 1971 Jul; 241(1):200-12. PubMed ID: 5125246
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterisation of the polysaccharide produced by Acetobacter xylinum strain CR1/4 by light scattering and atomic force microscopy.
    Ridout MJ; Brownsey GJ; Gunning AP; Morris VJ
    Int J Biol Macromol; 1998 Nov; 23(4):287-93. PubMed ID: 9849626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology microstructure, and development of colonies of Acetobacter xylinum.
    Sowden LC; Colvin JR
    Can J Microbiol; 1978 Jul; 24(7):772-9. PubMed ID: 679065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic characterization of a complex locus necessary for the transport and catabolism of erythritol, adonitol and L-arabitol in Sinorhizobium meliloti.
    Geddes BA; Oresnik IJ
    Microbiology (Reading); 2012 Aug; 158(Pt 8):2180-2191. PubMed ID: 22609752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro biosynthesis of acetan using electroporated Acetobacter xylinum cells as enzyme preparations.
    Semino CE; Dankert MA
    J Gen Microbiol; 1993 Nov; 139(11):2745-56. PubMed ID: 8277256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose.
    Keshk S; Sameshima K
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):291-6. PubMed ID: 16450110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O(2) tension maximizes bacterial cellulose pellicle production.
    Setyawati MI; Chien LJ; Lee CK
    J Biotechnol; 2007 Oct; 132(1):38-43. PubMed ID: 17868946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate-phosphate dikinase and the control of gluconeogenesis in Acetobacter xylinum.
    Benziman M; Eizen N
    J Biol Chem; 1971 Jan; 246(1):57-61. PubMed ID: 5541773
    [No Abstract]   [Full Text] [Related]  

  • 17. Polysaccharide biosynthesis in Acetobacter xylinum. Enzymatic synthesis of lipid diphosphate and monophospate sugars.
    García RC; Recondo E; Dankert M
    Eur J Biochem; 1974 Mar; 43(1):93-105. PubMed ID: 4600325
    [No Abstract]   [Full Text] [Related]  

  • 18. Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy.
    Kornmann H; Valentinotti S; Duboc P; Marison I; von Stockar U
    J Biotechnol; 2004 Sep; 113(1-3):231-45. PubMed ID: 15380658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The non-spherulitic birefringence in cellulose pellicles of Acetobacter xylinum.
    Colvin JR
    Can J Microbiol; 1966 Oct; 12(5):909-13. PubMed ID: 5972644
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of enantiopure 2-C-methyl-D-erythritol 4-phosphate and 2,4-cyclodiphosphate from D-arabitol.
    Urbansky M; Davis CE; Surjan JD; Coates RM
    Org Lett; 2004 Jan; 6(1):135-8. PubMed ID: 14703369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.