BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4740962)

  • 21. The mechanism of the reduction of cytochrome c by xanthine oxidase.
    Muraoka S; Enomoto H; Sugiyama M; Yamasaki H
    Biochim Biophys Acta; 1967 Sep; 143(2):408-15. PubMed ID: 6069205
    [No Abstract]   [Full Text] [Related]  

  • 22. Inhibition of milk xanthine oxidase by fluorodinitrobenzene.
    Nishino T; Tsushima K; Hille R; Massey V
    J Biol Chem; 1982 Jul; 257(13):7348-53. PubMed ID: 6806272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3,5-disubstituted 1,2,3,4-triazoles, 1 new class of xanthine oxidase inhibitor.
    Duggan DE; Noll RM; Baer JE; Novello FC; Baldwin JJ
    J Med Chem; 1975 Sep; 18(9):900-5. PubMed ID: 808613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Release of iron from ferritin by divicine, isouramil, acid-hydrolyzed vicine, and dialuric acid and initiation of lipid peroxidation.
    Monteiro HP; Winterbourn CC
    Arch Biochem Biophys; 1989 Jun; 271(2):536-45. PubMed ID: 2730003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the limited ability of superoxide to release iron from ferritin.
    Bolann BJ; Ulvik RJ
    Eur J Biochem; 1990 Nov; 193(3):899-904. PubMed ID: 2174370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical-induced tissue destruction during ischaemia and inflammation.
    Biemond P; Swaak AJ; Beindorff CM; Koster JF
    Biochem J; 1986 Oct; 239(1):169-73. PubMed ID: 3026367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines.
    Massey V; Komai H; Palmer G; Elion GB
    J Biol Chem; 1970 Jun; 245(11):2837-44. PubMed ID: 5467924
    [No Abstract]   [Full Text] [Related]  

  • 28. Ferritin oxidation in vitro: implication of iron release and degradation by the 20S proteasome.
    Rudeck M; Volk T; Sitte N; Grune T
    IUBMB Life; 2000 May; 49(5):451-6. PubMed ID: 10902578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate and product inhibition in the xanthine oxidase catalyzed oxidation of acetaldehyde.
    Goodman PA; Meany JE
    Biochemistry; 1974 Jul; 13(16):3254-7. PubMed ID: 4366471
    [No Abstract]   [Full Text] [Related]  

  • 30. Studies of the oxidation of some aminopteridines by xanthine oxidase.
    Valerino DM; McCormack JJ
    Biochim Biophys Acta; 1969 Jun; 184(1):154-63. PubMed ID: 5819375
    [No Abstract]   [Full Text] [Related]  

  • 31. Xanthine oxidase catalyzed oxidation of aldehydes. Oxidation of aliphatic aldehydes and 2- and 4-pyridinecarboxaldehyde.
    Gregory D; Goodman PA; Meany JE
    Biochemistry; 1972 Nov; 11(24):4472-7. PubMed ID: 4347179
    [No Abstract]   [Full Text] [Related]  

  • 32. Behavior of N-methylated allopurinols and related 4-thioxopyrazolo [3,4-d]pyrimidines towards bovine milk xanthine oxidase.
    Bergmann F; Frank A; Govrin H
    Biochim Biophys Acta; 1979 Sep; 570(1):215-20. PubMed ID: 486504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Xanthine oxidase-mediated oxidation of epinephrine.
    Valerino DM; McCormack JJ
    Biochem Pharmacol; 1971 Jan; 20(1):47-55. PubMed ID: 5570640
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of a prolonged superoxide flux on transferrin and ferritin.
    Paul T
    Arch Biochem Biophys; 2000 Oct; 382(2):253-61. PubMed ID: 11068877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic and e.p.r. studies on the inhibition of xanthine oxidase by alloxanthine (1 H-pyrazolo [3, 4-d] pyrimidine-4,6-diol).
    Williams JW; Bray RC
    Biochem J; 1981 Jun; 195(3):753-60. PubMed ID: 6274312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A kinetic study of hypoxanthine oxidation by milk xanthine oxidase.
    Escribano J; Garcia-Canovas F; Garcia-Carmona F
    Biochem J; 1988 Sep; 254(3):829-33. PubMed ID: 3196295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the mechanism of inhibition of xanthine oxidase by 5-diazoimidazole-4-carboxamide and related thioazoimidazole carboxamides.
    Iwata H; Yamamoto I; Gohda E
    Biochem Pharmacol; 1973 Aug; 22(15):1845-54. PubMed ID: 4722456
    [No Abstract]   [Full Text] [Related]  

  • 38. The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin.
    Monteiro HP; Winterbourn CC
    Biochem J; 1988 Dec; 256(3):923-8. PubMed ID: 2852009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis, screening and docking of fused pyrano[3,2-d]pyrimidine derivatives as xanthine oxidase inhibitor.
    Kaur M; Kaur A; Mankotia S; Singh H; Singh A; Singh JV; Gupta MK; Sharma S; Nepali K; Bedi PMS
    Eur J Med Chem; 2017 May; 131():14-28. PubMed ID: 28286211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of N-aryl-5-amino-4-cyanopyrazole derivatives as potent xanthine oxidase inhibitors.
    Gupta S; Rodrigues LM; Esteves AP; Oliveira-Campos AM; Nascimento MS; Nazareth N; Cidade H; Neves MP; Fernandes E; Pinto M; Cerqueira NM; BrĂ¡s N
    Eur J Med Chem; 2008 Apr; 43(4):771-80. PubMed ID: 17692432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.