These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 4741137)

  • 1. [A kinetic study of in vivo ATP synthesis during mono- or bichromatic illumination of Zea mays: red-far red antagonist effect].
    Michel JP; Thibault P
    Biochim Biophys Acta; 1973 May; 305(2):390-6. PubMed ID: 4741137
    [No Abstract]   [Full Text] [Related]  

  • 2. [Electron transport and photophosphorylation, coupled with photoreduction of oxygen by chloroplasts of peas, grown under different conditions of illumination].
    Shmeleva VL; Ivanov BN; Red'ko TP
    Biokhimiia; 1982 Jul; 47(7):1104-7. PubMed ID: 7115816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Endogenous photophosphorylation of isolated spinach chloroplasts].
    Miginiac-Maslow M
    Biochim Biophys Acta; 1971 Jun; 234(3):353-9. PubMed ID: 4399018
    [No Abstract]   [Full Text] [Related]  

  • 4. Development of photochemical activity during greening of heat-stressed etiolated seedlings of Zea mays.
    Lawanson AO
    Experientia; 1977 Feb; 33(2):200-1. PubMed ID: 844554
    [No Abstract]   [Full Text] [Related]  

  • 5. SEPARATION BY MONOCHROMATIC LIGHT OF PHOTOSYNTHETIC PHOSPHORYLATION FROM OXYGEN EVOLUTION.
    TAGAWA K; TSUJIMOTO HY; ARNON DI
    Proc Natl Acad Sci U S A; 1963 Sep; 50(3):544-9. PubMed ID: 14067103
    [No Abstract]   [Full Text] [Related]  

  • 6. [Photosystem I dependent phosphorylation of isolated chloroplasts with ascorbate-2,6-dichlorophenolindophenol as electron donor and methylviologen as electron acceptor].
    Strotmann H; von Gösseln C
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Apr; 27(4):445-55. PubMed ID: 4403315
    [No Abstract]   [Full Text] [Related]  

  • 7. Evidence for chemiosmotic coupling of electron transport to ATP synthesis in spinach chloroplasts.
    Telfer A; Evans MC
    Biochim Biophys Acta; 1972 Mar; 256(3):625-37. PubMed ID: 5020234
    [No Abstract]   [Full Text] [Related]  

  • 8. A coupling factor for photosynthetic phosphorylation from plastids of light- and dark-grown maize.
    Lockshin A; Falk RH; Bogorad L; Woodcock CL
    Biochim Biophys Acta; 1971 Mar; 226(2):366-82. PubMed ID: 4252524
    [No Abstract]   [Full Text] [Related]  

  • 9. The stoichiometry (ATP-2e- ratio) of non-cyclic photophosphorylation in isolated spinach chloroplasts.
    Reeves SG; Hall DO
    Biochim Biophys Acta; 1973 Jul; 314(1):66-78. PubMed ID: 4741595
    [No Abstract]   [Full Text] [Related]  

  • 10. Coassembly of Photosystem II and ATPase as Artificial Chloroplast for Light-Driven ATP Synthesis.
    Feng X; Jia Y; Cai P; Fei J; Li J
    ACS Nano; 2016 Jan; 10(1):556-61. PubMed ID: 26615669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic regeneration of ATP using bacterial chromatophores.
    Pace GW; Yang HS; Tannenbaum SR; Archer MC
    Biotechnol Bioeng; 1976 Oct; 18(10):1413-23. PubMed ID: 822897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic electron flow around photosystem I in C(3) plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex.
    Joët T; Cournac L; Peltier G; Havaux M
    Plant Physiol; 2002 Feb; 128(2):760-9. PubMed ID: 11842179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structural and functional characteristics of the photosynthetic apparatus of the mutants Arabidopsis thaliana (L.) Heynh].
    Iakubova MM; Nazarova ZA; Krendeleva TE
    Biokhimiia; 1980 May; 45(5):864-72. PubMed ID: 7378506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Textbooks ignore photosystem II-dependent ATP formation: is the Z scheme to blame?
    Ort DR; Good NE
    Trends Biochem Sci; 1988 Dec; 13(12):467-9. PubMed ID: 3075370
    [No Abstract]   [Full Text] [Related]  

  • 15. The light reactions of photosynthesis.
    Arnon DI
    Proc Natl Acad Sci U S A; 1971 Nov; 68(11):2883-92. PubMed ID: 4400251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophosphorylation as a function of illumination time. I. Effects of permeant cations and permeant anions.
    Ort DR; Dilley RA
    Biochim Biophys Acta; 1976 Oct; 449(1):95-107. PubMed ID: 61766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototaxis in Euglena. VI. Correlations between ATP production by light and phototactic rates.
    Tollin G; Robinson MI
    J Bioenerg; 1970 Jul; 1(2):139-45. PubMed ID: 5005953
    [No Abstract]   [Full Text] [Related]  

  • 18. Photophosphorylation in Halobacterium halobium.
    Danon A; Stoeckenius W
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1234-8. PubMed ID: 4524635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Efficiency of photophosphorylation in chloroplasts with steady and pulsed illumination].
    Gol'dfel'd MG; Dmitrovskiĭ LG; Bliumenfel'd LA
    Mol Biol (Mosk); 1978; 12(1):179-90. PubMed ID: 634281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum efficiency of photosynthetic energy conversion.
    Chain RK; Arnon DI
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3377-81. PubMed ID: 20627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.