These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4741907)

  • 1. The activation and oxidation of octanoate and palmitate by rat skeletal muscle mitochondria.
    Groot PH; Hülsmann WC
    Biochim Biophys Acta; 1973 Aug; 316(2):124-35. PubMed ID: 4741907
    [No Abstract]   [Full Text] [Related]  

  • 2. Palmitate oxidation by rat skeletal muscle mitochondria. Comparison of polarographic and radiochemical experiments.
    van Hinsbergh VW; Veerkamp JH; van Moerkerk HT
    Arch Biochem Biophys; 1978 Oct; 190(2):762-71. PubMed ID: 718176
    [No Abstract]   [Full Text] [Related]  

  • 3. On rate-controlling factors of long chain fatty acid oxidation.
    Pande SV
    J Biol Chem; 1971 Sep; 246(17):5384-90. PubMed ID: 5094674
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of the palmitoyl-CoA synthetase present in the inner membrane-matrix fraction of rat liver mitochondria.
    Groot PH; Van Loon CM; Hülsmann WC
    Biochim Biophys Acta; 1974 Jan; 337(1):1-12. PubMed ID: 4433540
    [No Abstract]   [Full Text] [Related]  

  • 5. Utilization of glucose, octanoate and palmitate by normal rat aorta, and the effect of these acids and of albumin on glucose metabolism.
    Hashimoto S; Dayton S
    Proc Soc Exp Biol Med; 1968 Oct; 129(1):35-41. PubMed ID: 5686537
    [No Abstract]   [Full Text] [Related]  

  • 6. The oxidation of erucic acid by rat heart mitochondria.
    Swarttouw MA
    Biochim Biophys Acta; 1974 Jan; 337(1):13-21. PubMed ID: 4433541
    [No Abstract]   [Full Text] [Related]  

  • 7. The oxidation of fatty-acyl derivatives by mitochondria from bovine fetal and calf hearts.
    Brosnan JT; Fritz IB
    Can J Biochem; 1971 Dec; 49(12):1296-300. PubMed ID: 5139937
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphorylation coupled to acyl-coenzyme A dehydrogenase-linked oxidation of fatty acids by liver and heart mitochondria.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1972 Sep; 275(3):298-301. PubMed ID: 5070055
    [No Abstract]   [Full Text] [Related]  

  • 9. Differential effects of acetate on palmitate and octanoate oxidation: segregation of acetyl CoA pools.
    Cederbaum AI; Rubin E
    Arch Biochem Biophys; 1975 Feb; 166(2):618-28. PubMed ID: 1119812
    [No Abstract]   [Full Text] [Related]  

  • 10. Salicylic acid stimulation of palmitic acid oxidation by rat skeletal muscle mitochondria.
    Jones RE; Askew EW; Hecker AL; Hofeldt FD
    Biochim Biophys Acta; 1981 Oct; 666(1):120-6. PubMed ID: 7295759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional utilization of palmitate, octanoate, and glucose by the isolated rat heart.
    Morrow RJ; Neely ML; Paradise RR
    Proc Soc Exp Biol Med; 1973 Jan; 142(1):223-9. PubMed ID: 4683244
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of oleate, palmitate, and octanoate on gluconeogenesis in isolated rabbit liver cells.
    Zaleski J; Bryla J
    Arch Biochem Biophys; 1977 Oct; 183(2):553-62. PubMed ID: 921276
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant.
    Dieuaide M; Couée I; Pradet A; Raymond P
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):199-207. PubMed ID: 8250843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of octanoate and palmitate on the metabolism of valine in perfused hindquarter of rat.
    Spydevold O
    Eur J Biochem; 1979 Jul; 97(2):389-94. PubMed ID: 467425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence and properties of acyl coenzyme A synthetase for medium-chain fatty acids in rat intestinal mucosa.
    Ohkubo Y; Mori S; Ishikawa Y; Shirai K; Saito Y; Yoshida S
    Digestion; 1992; 51(1):42-50. PubMed ID: 1386328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the specificity of the inhibition of adenine nucleotide translocase by long chain acyl-coenzyme A esters.
    Ho CH; Pande SV
    Biochim Biophys Acta; 1974 Oct; 369(1):86-94. PubMed ID: 4278702
    [No Abstract]   [Full Text] [Related]  

  • 17. Muscle carnitine palmityltransferase deficiency and myoglobinuria.
    DiMauro S; DiMauro PM
    Science; 1973 Nov; 182(4115):929-31. PubMed ID: 4745596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscular atrophy: activation of mitochondrial ATPase.
    Max SR
    Biochem Biophys Res Commun; 1973 Jun; 52(4):1278-84. PubMed ID: 4268717
    [No Abstract]   [Full Text] [Related]  

  • 19. On the nature of endogenous substrate in rat-liver mitochondria.
    Bryla J; Kaniuga Z; Frackowiak B
    Biochim Biophys Acta; 1967 Sep; 143(2):285-91. PubMed ID: 4292886
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of ionic strength on the activity of carnitine palmityltransferase I.
    Wood JM
    Biochemistry; 1973 Dec; 12(26):5268-73. PubMed ID: 4760490
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.