These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 4742561)

  • 1. Evidence for centers in the central nervous system that selectively regulate fat mobilization in the rat.
    Teixeira VL; Antunes-Rodrigues J; Migliorini RH
    J Lipid Res; 1973 Nov; 14(6):672-7. PubMed ID: 4742561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventromedial hypothalamic lesions and the mobilization of fatty acids.
    Nishizawa Y; Bray GA
    J Clin Invest; 1978 Mar; 61(3):714-21. PubMed ID: 641150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence for a central regulation of free fatty acid mobilization in the rat.
    Gross JL; Migliorini RH
    Am J Physiol; 1977 Feb; 232(2):E165-71. PubMed ID: 65918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a longitudinal pathway in rat hypothalamus that controls FFA mobilization.
    Coimbra CC; Migliorini RH
    Am J Physiol; 1983 Oct; 245(4):E332-7. PubMed ID: 6353934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Participation of the CNS in the control of FFA mobilization during fasting in rabbits.
    Paschoalini MA; Migliorini RH
    Physiol Behav; 1990 Mar; 47(3):461-5. PubMed ID: 2193310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothalamic regulation of lipid metabolism in the rat: effect of hypothalamic stimulation on lipolysis.
    Takahashi A; Shimazu T
    J Auton Nerv Syst; 1981 Sep; 4(3):195-205. PubMed ID: 7299038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraventricular 2-deoxyglucose, glucose, insulin, and free fatty acid mobilization.
    Coimbra CC; Gross JL; Migliorini RH
    Am J Physiol; 1979 Apr; 236(4):E317-27. PubMed ID: 434193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid mobilization to 2-deoxyglucose is blocked by globus pallidus lesions.
    Gunion MW; Grijalva CV; Novin D; Pi-Sunyer FX
    J Auton Nerv Syst; 1984 Sep; 11(2):161-71. PubMed ID: 6386943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of intracerebroventricular injection of atropine on metabolic responses during exercise in untrained rats.
    Lima NR; Coimbra CC; Marubayashi U
    Physiol Behav; 1998 Apr; 64(1):69-74. PubMed ID: 9661984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catecholamines and exercise-induced glucagon and fatty acid mobilization in the rat.
    Luyckx AS; Dresse A; Cession-Fossion A; Lefebvre PJ
    Am J Physiol; 1975 Aug; 229(2):376-83. PubMed ID: 1163663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free fatty acid mobilization in rats following intracerebroventricular norepinephrine.
    Barbosa MC; Migliorini RH
    Am J Physiol; 1982 Apr; 242(4):E248-52. PubMed ID: 7065239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central and peripheral control of sympathoadrenal activity and energy metabolism in rats.
    Scheurink AJ; Steffens AB
    Physiol Behav; 1990 Dec; 48(6):909-20. PubMed ID: 2087525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of lipolysis induced by electrical stimulation of the hypothalamus in the rabbit.
    Kumon A; Takahashi A; Hara T; Shimazu T
    J Lipid Res; 1976 Nov; 17(6):551-8. PubMed ID: 993668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the sympathoadrenal system in exercise-induced inhibition of insulin secretion. Effects of islet transplantation.
    Houwing H; Fränkel KM; Strubbe JH; van Suylichem PT; Steffens AB
    Diabetes; 1995 May; 44(5):565-71. PubMed ID: 7729617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halothane-induced lipolysis in rats.
    Mäkeläinen A; Nikki P; Vapaatalo H
    Acta Anaesthesiol Scand; 1973; 17(3):170-8. PubMed ID: 4148185
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of Increased Central Cholinergic Activity on the Metabolic Challenge Induced by Submaximal Exercise in Rats: Adrenomedullary Secretion Influences.
    Rodrigues AG; Campos HO; Drummond LR; Marubayashi U; Coimbra CC
    Pharmacology; 2022; 107(1-2):46-53. PubMed ID: 34788751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin-sensitive glucoreceptors in rat preoptic area that regulate FFA mobilization.
    Coimbra CC; Migliorini RH
    Am J Physiol; 1986 Dec; 251(6 Pt 1):E703-6. PubMed ID: 3024500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adrenal demedullation blocks and brain norepinephrine depletion potentiates the hyperglycemic response to a variety of stressors.
    Bialik RJ; Smythe JW; Sardelis M; Roberts DC
    Brain Res; 1989 Nov; 502(1):88-98. PubMed ID: 2819460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sympathoadrenal influence on glucose, FFA, and insulin levels in exercising rats.
    Scheurink AJ; Steffens AB; Bouritius H; Dreteler GH; Bruntink R; Remie R; Zaagsma J
    Am J Physiol; 1989 Jan; 256(1 Pt 2):R161-8. PubMed ID: 2643350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of liver nerves, glucagon, and adrenaline to the glycaemic response to exercise in rats.
    Van Dijk G; Balkan B; Lindfeldt J; Bouws G; Scheurink AJ; Ahrén B; Steffens AB
    Acta Physiol Scand; 1994 Mar; 150(3):305-13. PubMed ID: 7912034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.