These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 4745208)

  • 1. Creatine phosphate and adenine nucleotides in muscle from animals with muscular dystrophy.
    Farrell PM; Olson RE
    Am J Physiol; 1973 Nov; 225(5):1102-6. PubMed ID: 4745208
    [No Abstract]   [Full Text] [Related]  

  • 2. Energy reserves and chemical changes in denervated anterior and posterior latissimus dorsi muscles of the chicken.
    Malvey JE; Schottelius DD; Schottelius BA
    Exp Neurol; 1971 Oct; 33(1):171-80. PubMed ID: 5119951
    [No Abstract]   [Full Text] [Related]  

  • 3. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

  • 4. [The energy metabolism of skeletal muscle in relation to aging].
    Honorati MC; Ermini M; Stecconi R
    Boll Soc Ital Biol Sper; 1973 Oct; 49(20):1134-40. PubMed ID: 4802342
    [No Abstract]   [Full Text] [Related]  

  • 5. Energy metabolism of the skeletal muscle of genetically dystrophic hamster.
    Dhalia NS; Fedelesova M; Toffler I
    Can J Biochem; 1972 May; 50(5):550-6. PubMed ID: 4402162
    [No Abstract]   [Full Text] [Related]  

  • 6. A defect of purine nucleotide cycle in the skeletal muscle of hereditary dystrophic mice.
    Sanada H; Yamaguchi M
    Biochem Biophys Res Commun; 1979 Sep; 90(2):453-9. PubMed ID: 508313
    [No Abstract]   [Full Text] [Related]  

  • 7. The creatine-creatine phosphate energy shuttle.
    Bessman SP; Carpenter CL
    Annu Rev Biochem; 1985; 54():831-62. PubMed ID: 3896131
    [No Abstract]   [Full Text] [Related]  

  • 8. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].
    Iakovlev NN; Chagovets NR; Maksimova LV
    Ukr Biokhim Zh (1978); 1980; 52(3):293-8. PubMed ID: 6247797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of denervation on adenine nucleotides in skeletal muscle from normal and dystrophic mice.
    Clow DW; Boegman RJ
    Exp Neurol; 1987 May; 96(2):334-43. PubMed ID: 3569459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 11. Free adenosine diphosphate as an intermediary in the phosphorylation by creatine phosphate of adenosine diphosphate bound to actin.
    West JJ; Nagy B; Gergely J
    J Biol Chem; 1967 Mar; 242(6):1140-5. PubMed ID: 4290314
    [No Abstract]   [Full Text] [Related]  

  • 12. Breakdown of adenine nucleotides, formation of oxygen free radicals, and early markers of cellular injury in endotoxic shock.
    Jabs CM; Neglen P; Eklof B
    Eur J Surg; 1995 Mar; 161(3):147-55. PubMed ID: 7599292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen debt and high-energy phosphates in gastrocnemius muscle of the dog.
    Piiper J; Di Prampero PE; Cerretelli P
    Am J Physiol; 1968 Sep; 215(3):523-31. PubMed ID: 5670989
    [No Abstract]   [Full Text] [Related]  

  • 14. Creatine kinase and myofibrillar proteins in hereditary muscular dystrophy and vitamin E deficiency.
    Olson RE
    Am J Clin Nutr; 1974 Oct; 27(10):1117-29. PubMed ID: 4279024
    [No Abstract]   [Full Text] [Related]  

  • 15. Defective respiration and oxidative phosphorylation in muscle mitochondria of hamsters in the late stages of hereditary muscular dystrophy.
    Jacobson BE; Blanchaer MC; Wrogemann K
    Can J Biochem; 1970 Sep; 48(9):1037-42. PubMed ID: 5475465
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparison of ion shifs with adenosine triphosphate and creatine phosphate levels in muscle.
    BRINER GP; SIMON SE; FRATER R; TASKER P
    Biochim Biophys Acta; 1959 Oct; 35():485-95. PubMed ID: 13804458
    [No Abstract]   [Full Text] [Related]  

  • 17. Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells.
    Pulido SM; Passaquin AC; Leijendekker WJ; Challet C; Wallimann T; Rüegg UT
    FEBS Lett; 1998 Nov; 439(3):357-62. PubMed ID: 9845353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate metabolism in the electric organ.
    Cheng SC; Keynes RD
    Biochim Biophys Acta; 1967 Jul; 143(1):249-56. PubMed ID: 4292785
    [No Abstract]   [Full Text] [Related]  

  • 19. Decreased phosphorylative capacity and respiratory rate of rabbit skeletal muscle mitochondria in vitamin E dystrophy.
    Heffron JJ; Chan AC; Gronert GA; Hegarty PV
    Int J Biochem; 1978; 9(7):539-43. PubMed ID: 689273
    [No Abstract]   [Full Text] [Related]  

  • 20. [Free nucleotide content in muscles following administration of ACTH and hydrocortisone].
    Korkach VI
    Biull Eksp Biol Med; 1971 Jun; 71(6):38-40. PubMed ID: 4328985
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.