These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4745322)

  • 1. An analysis of the apparent parameters of the glucose transport system in the red cell membrane.
    Bolis L; Luly P; Becker C; Wilbrandt W
    Biochim Biophys Acta; 1973 Aug; 318(2):289-96. PubMed ID: 4745322
    [No Abstract]   [Full Text] [Related]  

  • 2. Anomalous transport kinetics and the glucose carrier hypothesis.
    Regen DM; Tarpley HL
    Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852
    [No Abstract]   [Full Text] [Related]  

  • 3. [Changes in glucose transport in fresh human erythrocytes after longer incubation].
    Fuhrmann GF; Liggenstorfer P; Wilbrandt W
    Experientia; 1971 Dec; 27(12):1428-30. PubMed ID: 5144851
    [No Abstract]   [Full Text] [Related]  

  • 4. Carrier and non-carrier models for sugar transport in the human red blood cell.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470
    [No Abstract]   [Full Text] [Related]  

  • 5. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138
    [No Abstract]   [Full Text] [Related]  

  • 6. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY; Carlson LM; Whaley DA
    Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799
    [No Abstract]   [Full Text] [Related]  

  • 7. A study of the dependence of the human erythrocyte glucose transport system on membrane sulfhydryl groups.
    Smith RP; Ellman GL
    J Membr Biol; 1973; 12(2):177-88. PubMed ID: 4205085
    [No Abstract]   [Full Text] [Related]  

  • 8. A high affinity site for sugar transport at the inner face of the human erythrocyte membrane?
    Foster DM; Jacquez JA; Lieb WR; Stein WD
    Biochim Biophys Acta; 1979 Aug; 555(2):349-51. PubMed ID: 476109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH dependence of rubidium influx in human red blood cells.
    Beaugé LA; Adragna N
    Biochim Biophys Acta; 1974 Jun; 352(3):441-7. PubMed ID: 4841674
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of membrane steroid modification on human erythrocyte glucose transport.
    Masiak SJ; LeFevre PG
    Arch Biochem Biophys; 1974 Jun; 162(2):442-7. PubMed ID: 4366146
    [No Abstract]   [Full Text] [Related]  

  • 11. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell.
    Eilam Y; Stein WD
    Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086
    [No Abstract]   [Full Text] [Related]  

  • 12. The temperature dependence of the exchange transport of glucose in human erythrocytes.
    Lacko L; Wittke B; Geck P
    J Cell Physiol; 1973 Oct; 82(2):213-8. PubMed ID: 4753421
    [No Abstract]   [Full Text] [Related]  

  • 13. Tracer kinetic analysis of phosphate incorporation of erythrocytes in vitro. II. Model analysis of the system with the ATP pool not in steady state.
    Latzkovits L; Fajszi C; Szentistványi I
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):307-14. PubMed ID: 4672031
    [No Abstract]   [Full Text] [Related]  

  • 14. The exchange and maximal net flux of glucose across the human erythrocyte. II. The effect of two sulphydryl enzyme inhibitors, chlormerodrin and p-chloromercuribenzene sulfonic acid.
    Zipper H; Mawe RC
    Biochim Biophys Acta; 1974 Jul; 356(2):207-18. PubMed ID: 4854826
    [No Abstract]   [Full Text] [Related]  

  • 15. On the temperature dependence of initial velocities of glucose transport in the human red blood cell.
    Hankin BL; Stein WD
    Biochim Biophys Acta; 1972 Oct; 288(1):127-36. PubMed ID: 4640380
    [No Abstract]   [Full Text] [Related]  

  • 16. An alternative to the carrier model for sugar transport across red cell membranes.
    Naftalin RJ
    Biomembranes; 1972; 3():117-26. PubMed ID: 4666509
    [No Abstract]   [Full Text] [Related]  

  • 17. Solute and solvent flow across mammalian red cell membrane. How to test for Onsager reciprocal relation.
    Sha'afi RI; Dakkuri A; To'mey G
    Biochim Biophys Acta; 1971 Oct; 249(1):260-5. PubMed ID: 5141130
    [No Abstract]   [Full Text] [Related]  

  • 18. Asymmetry in human erythrocyte sugar transport.
    Miller DM
    J Biol Chem; 1975 May; 250(10):3637-8. PubMed ID: 1126930
    [No Abstract]   [Full Text] [Related]  

  • 19. Glucose transport in white erythrocyte ghosts and membrane-derived vesicles.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):422-8. PubMed ID: 4719139
    [No Abstract]   [Full Text] [Related]  

  • 20. Application a three compartment tracerkinetic model for comparing the K+, Rb+ and Cs+ transport of erythrocytes.
    Györgyi S; Kanyár B
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):359-65. PubMed ID: 4671876
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.