These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 4747601)

  • 1. Manganese requirement of the transcription processes in Lactobacillus curvatus.
    Stetter KO; Kandler O
    FEBS Lett; 1973 Oct; 36(1):5-8. PubMed ID: 4747601
    [No Abstract]   [Full Text] [Related]  

  • 2. [Role of manganese in the induction of lactid acid racemase in Lactobacillus curvatus DSM 20010].
    Stetter K; Kandler O
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1571. PubMed ID: 4649840
    [No Abstract]   [Full Text] [Related]  

  • 3. Purification, crystallization and properties of the D-xylose isomerase from Lactobacillus brevis.
    Yamanaka K
    Biochim Biophys Acta; 1968 Mar; 151(3):670-80. PubMed ID: 5646045
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcription in lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus curvatus.
    Stetter KO; Zillig W
    Eur J Biochem; 1974 Oct; 48(2):527-40. PubMed ID: 4614979
    [No Abstract]   [Full Text] [Related]  

  • 5. Optimization of culture medium and growth conditions for production of L-arabinose isomerase and D-xylose isomerase by Lactobacillus bifermentans.
    Givry S; Duchiro F
    Mikrobiologiia; 2008; 77(3):324-30. PubMed ID: 18683648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonstarter lactic acid bacteria and aging temperature affect calcium lactate crystallization in cheddar cheese.
    Chou YE; Edwards CG; Luedecke LO; Bates MP; Clark S
    J Dairy Sci; 2003 Aug; 86(8):2516-24. PubMed ID: 12939075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of
    Yang H; Wu H; Gao L; Jia H; Zhang Y; Cui Z; Li Y
    J Microbiol Biotechnol; 2016 Dec; 26(12):2148-2158. PubMed ID: 27666995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of mixed cultures of Lactobacillus plantarum and Propionibacterium shermanii.
    Lee IH; Fredrickson AG; Tsuchiya HM
    Biotechnol Bioeng; 1976 Apr; 18(4):513-26. PubMed ID: 773448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The influence of low alternative currents on nonoxidative lactic acid formation].
    CARLSON S
    Arch Hyg Bakteriol; 1960 Aug; 144():452-61. PubMed ID: 13690838
    [No Abstract]   [Full Text] [Related]  

  • 10. [The origin of fermentation by-products in the lactic acid fermentation of Lactobacillus acidophilus].
    Weiss N; Busse M; Kandler O
    Arch Mikrobiol; 1968; 62(1):85-93. PubMed ID: 5709358
    [No Abstract]   [Full Text] [Related]  

  • 11. Purification and properties of lactate racemase from Lactobacillus sake.
    Hiyama T; Fukui S; Kitahara K
    J Biochem; 1968 Jul; 64(1):99-107. PubMed ID: 5707819
    [No Abstract]   [Full Text] [Related]  

  • 12. [On physiological role of lactic acid synthesis by homo-fermented lactic bacteria].
    VESELOV IIa; KUZNETSOVA EG
    Tr Latv Padomju Soc Repub Zinat Akad Mikrobiol Inst; 1959; 6():61-71. PubMed ID: 13841965
    [No Abstract]   [Full Text] [Related]  

  • 13. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.
    Cousin FJ; Lynch SM; Harris HM; McCann A; Lynch DB; Neville BA; Irisawa T; Okada S; Endo A; O'Toole PW
    Appl Environ Microbiol; 2015 Feb; 81(4):1297-1308. PubMed ID: 25501479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic screening of Lactobacillus sakei and Lactobacillus curvatus strains for their peptidolytic system and amino acid metabolism, and comparison of their volatilomes in a model system.
    Freiding S; Gutsche KA; Ehrmann MA; Vogel RF
    Syst Appl Microbiol; 2011 Jul; 34(5):311-20. PubMed ID: 21570226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the effects of manganese and magnesium on initiation and elongation in the RNA polymerase I reaction.
    Nagamine Y; Mizuno D; Natori S
    Biochim Biophys Acta; 1978 Jul; 519(2):440-6. PubMed ID: 566565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of ribosomes during thiamine starvation and restoration in Lactobacillus viridescens.
    Loh W; Farnbacher M; Bohne L; Emmerich B; Kersten H
    Biochim Biophys Acta; 1974 Jun; 353(2):238-47. PubMed ID: 4842019
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative genomics of Lactobacillus curvatus enables prediction of traits relating to adaptation and strategies of assertiveness in sausage fermentation.
    Eisenbach L; Janßen D; Ehrmann MA; Vogel RF
    Int J Food Microbiol; 2018 Dec; 286():37-47. PubMed ID: 30031987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-Phenyllactic acid production by substrate feeding and pH-control in fed-batch fermentation of Lactobacillus sp. SK007.
    Mu W; Liu F; Jia J; Chen C; Zhang T; Jiang B
    Bioresour Technol; 2009 Nov; 100(21):5226-9. PubMed ID: 19501505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of Lactobacillus curvatus LFC1 to produce slits in Cheddar cheese.
    Porcellato D; Johnson ME; Houck K; Skeie SB; Mills DA; Kalanetra KM; Steele JL
    Food Microbiol; 2015 Aug; 49():65-73. PubMed ID: 25846916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of nucleic acid synthesis in Lactobacillus acidophilus R-26.
    Soska J; Lark KG
    Biochim Biophys Acta; 1966 Jun; 119(3):526-39. PubMed ID: 5963026
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.