These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4748159)

  • 21. Impact of nitrophenols on the photosynthetic electron transport chain and ATP content in Nostoc muscorum and Chlorella vulgaris.
    Umamaheswari A; Venkateswarlu K
    Ecotoxicol Environ Saf; 2004 Jun; 58(2):256-9. PubMed ID: 15157580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of illumination and oxygen supply upon the levels of pyridine nucleotides in Chlorella cells.
    OH-HAMA T; MIYACHI S
    Biochim Biophys Acta; 1959 Jul; 34():202-10. PubMed ID: 14428441
    [No Abstract]   [Full Text] [Related]  

  • 23. Respiration rate and inter nal adenosine triphosphate concentration in Chlorella.
    SYRETT PJ
    Arch Biochem Biophys; 1958 May; 75(1):117-24. PubMed ID: 13534692
    [No Abstract]   [Full Text] [Related]  

  • 24. In vivo characterization of the electrochemical proton gradient generated in darkness in green algae and its kinetic effects on cytochrome b6f turnover.
    Finazzi G; Rappaport F
    Biochemistry; 1998 Jul; 37(28):9999-10005. PubMed ID: 9665705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of ATP in the control of energy metabolism in growing bacteria.
    Harrison DE; Maitra P
    J Gen Microbiol; 1968 Aug; 53(1):Suppl:7-8. PubMed ID: 5677985
    [No Abstract]   [Full Text] [Related]  

  • 26. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii.
    Ananyev G; Gates C; Kaplan A; Dismukes GC
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):873-883. PubMed ID: 28734933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides.
    Wu C; Xiong W; Dai J; Wu Q
    Plant Physiol; 2015 Feb; 167(2):586-99. PubMed ID: 25511434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake.
    Komor E; Tanner W
    Eur J Biochem; 1974 May; 44(1):219-23. PubMed ID: 4854863
    [No Abstract]   [Full Text] [Related]  

  • 29. Cooperativity between photosystem II centers at the level of primary electron transfer.
    Diner B
    Biochim Biophys Acta; 1974 Dec; 368(3):371-85. PubMed ID: 4451657
    [No Abstract]   [Full Text] [Related]  

  • 30. A confirmation of the proposed model for the hexose uptake system of Chlorella vulgaris. Anaerobic studies in the light and in the dark.
    Komor E; Loos E; Tanner W
    J Membr Biol; 1973; 12(1):89-99. PubMed ID: 4781067
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect and mechanism of TiO
    Middepogu A; Hou J; Gao X; Lin D
    Ecotoxicol Environ Saf; 2018 Oct; 161():497-506. PubMed ID: 29913418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinctive features of the heterotrophic fixation of CO2 in Chlorella adapted to various concentrations of carbonic acid.
    Nekrasova GF
    Sov J Ecol; 1974 Jul; 4(5):455-7. PubMed ID: 4432146
    [No Abstract]   [Full Text] [Related]  

  • 33. [Efficiency of active transport of sulfates in 2 mutants of Chlorella vulgaris with high and low content of sulfurated amino acids].
    Passera C
    Boll Soc Ital Biol Sper; 1974 Jul; 50(12):880-6. PubMed ID: 4447701
    [No Abstract]   [Full Text] [Related]  

  • 34. Mixotrophic metabolism of Chlorella sorokiniana and algal-bacterial consortia under extended dark-light periods and nutrient starvation.
    Alcántara C; Fernández C; García-Encina PA; Muñoz R
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2393-404. PubMed ID: 25341398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlation between flash-induced oxygen evolution and fluorescence yield kinetics in the 0 to 16 mus range in Chlorella pyyrenoidosa during incubation with hydroxylamine.
    Den Haan GA; Gorter De Vries H; Duysens LN
    Biochim Biophys Acta; 1976 May; 430(2):265-81. PubMed ID: 1276184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of synthesis and utilization of adenosine triphosphate by intact cells of Rhodospirillum rubrum.
    Welsch F; Smith L
    Biochemistry; 1969 Aug; 8(8):3403-8. PubMed ID: 4897335
    [No Abstract]   [Full Text] [Related]  

  • 37. Proton-coupled hexose transport in Chlorella vulgaris.
    Komor E
    FEBS Lett; 1973 Dec; 38(1):16-8. PubMed ID: 4772688
    [No Abstract]   [Full Text] [Related]  

  • 38. Triggered-luminescence in dark adapted Chlorella cells and chloroplasts.
    Etienne AL; Lavorel J
    FEBS Lett; 1975 Oct; 57(3):276-9. PubMed ID: 1181201
    [No Abstract]   [Full Text] [Related]  

  • 39. [Limiting reaction between two photoreactions of system II in Chlorella].
    Bouges B
    Biochim Biophys Acta; 1972 Feb; 256(2):381-4. PubMed ID: 5016546
    [No Abstract]   [Full Text] [Related]  

  • 40. On the state 1-state 2 phenomenon in photosynthesis.
    Wang RT; Myers J
    Biochim Biophys Acta; 1974 Apr; 347(1):134-40. PubMed ID: 4433555
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.