These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 4751932)

  • 21. Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates.
    Karmonik C; Bismuth JX; Davies MG; Lumsden AB
    Technol Health Care; 2008; 16(5):343-54. PubMed ID: 19126973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hemodynamics and the heart.
    Noordergraaf A; Meester GT
    Bibl Cardiol; 1973; 30():75-86. PubMed ID: 4784480
    [No Abstract]   [Full Text] [Related]  

  • 24. [Should the presence of coiled blood flow in the left heart ventricle and aorta be taken into consideration when constructing artificial heart valves?].
    Orlovskiĭ PI; Gritsenko VV; Uglov FG; Lazarev SM; Davydenko VV; Senchik KIu; Bushmarin ON; Galin NP; Iukhnev AD; Ziabrikov VV
    Vestn Khir Im I I Grek; 1998; 157(1):10-6. PubMed ID: 9611307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro characterization of aortic retrograde and antegrade flow from pulsatile and non-pulsatile ventricular assist devices.
    DiGiorgi PL; Smith DL; Naka Y; Oz MC
    J Heart Lung Transplant; 2004 Feb; 23(2):186-92. PubMed ID: 14761766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversal blood flow component as determinant of the arterial functional capability: theoretical implications in physiological and therapeutic conditions.
    Bia D; Zócalo Y; Armentano RL; de Forteza E; Cabrera-Fischer E
    Artif Organs; 2009 Mar; 33(3):266-72. PubMed ID: 19245526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.
    Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J
    J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The measurement of relative stroke volume from aortic pulse contour of pulse pressure.
    Osborn JJ; Russell JA; Beaumont J; de Lanerolle P; McChesney B; Garfield F
    Vasc Dis; 1968 Sep; 5(3):165-77. PubMed ID: 5676641
    [No Abstract]   [Full Text] [Related]  

  • 29. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis.
    Frydrychowicz A; Berger A; Russe MF; Stalder AF; Harloff A; Dittrich S; Hennig J; Langer M; Markl M
    J Thorac Cardiovasc Surg; 2008 Aug; 136(2):400-7. PubMed ID: 18692649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytical modeling of the instantaneous pressure gradient across the aortic valve.
    Garcia D; Pibarot P; Durand LG
    J Biomech; 2005 Jun; 38(6):1303-11. PubMed ID: 15863115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches.
    Barakat AI; Karino T; Colton CK
    Biorheology; 1997; 34(3):195-221. PubMed ID: 9474263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of an experimental stenosis in the porcine descending thoracic aorta.
    Tsatsaris A; Iliopoulos D; Baldoukas A; Triantafyllou D; Berketis N; Kavantzas N
    Artif Organs; 2004 Nov; 28(11):987-92. PubMed ID: 15504114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pseudo-organ boundary conditions applied to a computational fluid dynamics model of the human aorta.
    Yull Park J; Young Park C; Mo Hwang C; Sun K; Goo Min B
    Comput Biol Med; 2007 Aug; 37(8):1063-72. PubMed ID: 17140558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the heart pump function by afterload intracardiac pressure and blood flow measurements in cats.
    Trubetskoi AV; Sakharov MP; Orlova TR; Shlain VA; Ragimov SE
    Cor Vasa; 1983; 25(5):381-91. PubMed ID: 6228385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aortic wave reflection and input impedance as a function of posture in a chronic primate model.
    Latham RD; Tran CC; Fanton JW; White CD; Owens RW; Self DA
    Physiologist; 1992 Feb; 35(1 Suppl):S53-4. PubMed ID: 1589536
    [No Abstract]   [Full Text] [Related]  

  • 36. Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion.
    Mekkaoui C; Rolland PH; Friggi A; Rasigni M; Mesana TG
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):699-710. PubMed ID: 12658214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Hydrodynamic model of the aortic blood flow].
    Klimes F
    Cas Lek Cesk; 1973 Nov; 112(45):1383-9. PubMed ID: 4751932
    [No Abstract]   [Full Text] [Related]  

  • 38. Quantitative evaluation of intra-aortic flow disturbance by the fluid momentum index: Effect of the left ventricular systolic function on the hemodynamics in the aorta.
    Nakamura M; Wada S; Yamaguchi T
    Technol Health Care; 2007; 15(2):111-20. PubMed ID: 17361055
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.