BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4753048)

  • 1. Inhibition of glycine oxidation in cultured fibroblasts by isoleucine.
    Hillman RE; Sowers LH; Cohen JL
    Pediatr Res; 1973 Dec; 7(12):945-7. PubMed ID: 4753048
    [No Abstract]   [Full Text] [Related]  

  • 2. Hyperglycinemia with ketosis due to a defect in isoleucine metabolism: a preliminary report.
    Keating JP; Feigin RD; Tenenbaum SM; Hillman RE
    Pediatrics; 1972 Dec; 50(6):890-5. PubMed ID: 4636454
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition of glycine-serine interconversion in cultured human fibroblasts by products of isoleucine catabolism.
    Hillman RE; Otto EF
    Pediatr Res; 1974 Dec; 8(12):941-5. PubMed ID: 4444863
    [No Abstract]   [Full Text] [Related]  

  • 4. Beta-ketothiolase deficiency as a cause of the "ketotic hyperglycinemia syndrome".
    Hillman RE; Keating JP
    Pediatrics; 1974 Feb; 53(2):221-5. PubMed ID: 4812006
    [No Abstract]   [Full Text] [Related]  

  • 5. An inherited disorder of isoleucine catabolism causing accumulation of alpha-methylacetoacetate and alpha-methyl-beta -hydroxybutyrate, and intermittent metabolic acidosis.
    Daum RS; Scriver CR; Mamer OA; Delvin E; Lamm P; Goldman H
    Pediatr Res; 1973 Mar; 7(3):149-60. PubMed ID: 4690360
    [No Abstract]   [Full Text] [Related]  

  • 6. Glycine metabolism and spinal cord disorders.
    Bank WJ; Pizer L; Pfendner W
    Adv Neurol; 1978; 21():267-78. PubMed ID: 216244
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolism of [1-(14)C] and [2-(14)C] leucine in cultured skin fibroblasts from patients with isovaleric acidemia. Characterization of metabolic defects.
    Tanaka K; Mandell R; Shih VE
    J Clin Invest; 1976 Jul; 58(1):164-72. PubMed ID: 932204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological significance of glycine cleavage system in human liver as revealed by the study of a case of hyperglycinemia.
    Yoshida T; Kikuchi G
    Biochem Biophys Res Commun; 1969 May; 35(4):577-83. PubMed ID: 5788511
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolism of glycine in the nonketotic form of hyperglycinemia.
    Ando T; Nyhan WL; Gerritsen T; Gong L; Heiner DC; Bray PF
    Pediatr Res; 1968 Jul; 2(4):254-63. PubMed ID: 5669662
    [No Abstract]   [Full Text] [Related]  

  • 10. Diagnosis of inborn errors of phytanic acid oxidation using tritiated phytanic acid.
    Zenger-Hain J; Craft DA; Rizzo WB
    Prog Clin Biol Res; 1992; 375():399-407. PubMed ID: 1438384
    [No Abstract]   [Full Text] [Related]  

  • 11. Hyperglycinemia with ketoacidosis and leukopenia. Metabolic studies on the nature of the defect.
    Soriano JR; Taitz LS; Finberg L; Edelmann CM
    Pediatrics; 1967 Jun; 39(6):818-28. PubMed ID: 6026548
    [No Abstract]   [Full Text] [Related]  

  • 12. Isoleucine transport by cultured human fibroblasts. II. Selection of a cell line with reduced isoleucine uptake.
    Hillman RE; Otto EF
    Biochim Biophys Acta; 1974 Oct; 367(1):81-7. PubMed ID: 4420387
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence for a short-chain carnitine-acylcarnitine translocase in mitochondria specifically related to the metabolism of branched-chain amino acids.
    Roe DS; Roe CR; Brivet M; Sweetman L
    Mol Genet Metab; 2000 Jan; 69(1):69-75. PubMed ID: 10655160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valine-sensitive nonketotic hyperglycinemia. Case report.
    Krieger I; Hart ZH
    J Pediatr; 1974 Jul; 85(1):43-8. PubMed ID: 4855367
    [No Abstract]   [Full Text] [Related]  

  • 15. Screening for inborn errors of fatty acid oxidation in cultured fibroblasts: an overview.
    Rhead WJ
    Prog Clin Biol Res; 1990; 321():365-82. PubMed ID: 2183237
    [No Abstract]   [Full Text] [Related]  

  • 16. [Human fibroblast bank for studying amino acid disorders and organic acidemias].
    del Valle JA; Merinero B; Pérez-Cerdá C; Ugarte M
    Rev Esp Fisiol; 1982; 38 Suppl():207-10. PubMed ID: 7146578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple acyl-coenzyme A dehydrogenation disorders (MAD) responsive to riboflavin: biochemical studies in fibroblasts.
    Roettger V; Marshall T; Amendt B; Rhead WJ
    Prog Clin Biol Res; 1992; 375():317-26. PubMed ID: 1438377
    [No Abstract]   [Full Text] [Related]  

  • 18. The conversion of [1-13C]glycine and [2-13C]glycine to [13C]oxalate in primary hyperoxaluria: evidence for the existence of more than one metabolic pathway from glycine to oxalate in man.
    Dean BM; Watts RW; Westwick WJ
    Clin Sci; 1968 Oct; 35(2):325-35. PubMed ID: 5721235
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycine transport by cultured skin fibroblasts from a patient with isolated hyperglycinuria.
    Fénéant M; Moatti N; Lemonnier F; Maccario J; Gautier M; Charpentier C; Lemonnier A
    J Inherit Metab Dis; 1980; 3(3):97-8. PubMed ID: 6775149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of L-isoleucine by cultured human fibroblasts. Uptake by normal cell lines and isolation of a cell line lacking sodium-dependent uptake.
    Hillman RE; Otto EF
    J Biol Chem; 1974 Jun; 249(11):3430-5. PubMed ID: 4831221
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.