These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4753421)

  • 1. The temperature dependence of the exchange transport of glucose in human erythrocytes.
    Lacko L; Wittke B; Geck P
    J Cell Physiol; 1973 Oct; 82(2):213-8. PubMed ID: 4753421
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of chlorpromazine with the transport system of glucose in human erythrocytes.
    Lacko L; Wittke B; Lacko I
    Arzneimittelforschung; 1980; 30(11):1852-5. PubMed ID: 7192992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of some beta-receptor blockers with the transport system of glucose in human erythrocytes.
    Lacko L; Wittke B
    Arzneimittelforschung; 1985; 35(6):961-3. PubMed ID: 2862876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of glucose transport in human erythrocytes.
    Brahm J
    J Physiol; 1983 Jun; 339():339-54. PubMed ID: 6887027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetics and thermodynamics of glucose transport in human erythrocytes: indications for the molecular mechanism of transport.
    Lowe AG
    Biochem Soc Trans; 1989 Jun; 17(3):435-8. PubMed ID: 2753214
    [No Abstract]   [Full Text] [Related]  

  • 6. Temperature dependence of phosphate entry into stored human erythrocytes.
    Peterson SC
    Biochim Biophys Acta; 1972 Mar; 255(3):844-9. PubMed ID: 5020228
    [No Abstract]   [Full Text] [Related]  

  • 7. The pH and temperature dependence of the interaction of steroid hormones with the transport system of glucose in human erythrocytes.
    Lacko L; Wittke B; Lacko I
    J Cell Physiol; 1977 Feb; 90(2):161-7. PubMed ID: 14166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromate uptake by human red blood cells: comparison of permeability for different divalent anions.
    Ormos G; Mányai S
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):197-207. PubMed ID: 4422059
    [No Abstract]   [Full Text] [Related]  

  • 9. Asymmetry in human erythrocyte sugar transport.
    Miller DM
    J Biol Chem; 1975 May; 250(10):3637-8. PubMed ID: 1126930
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of homologous local anesthetics of the 4-alkoxy- and 4-alkylamino-benzoic acid-diethylamino-esthylester- hydrochloride series on the glucose transport in human erythrocytes.
    Lacko L; Wittke B; Lacko I
    J Cell Physiol; 1979 Jul; 100(1):169-74. PubMed ID: 313934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of the apparent parameters of the glucose transport system in the red cell membrane.
    Bolis L; Luly P; Becker C; Wilbrandt W
    Biochim Biophys Acta; 1973 Aug; 318(2):289-96. PubMed ID: 4745322
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction of DL-, D- and L-propranolol with the transport system of glucose in human erythrocytes.
    Lacko L; Wittke B; Lacko I
    Arzneimittelforschung; 1979; 29(11):1685-7. PubMed ID: 44472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of temperature on the competitive inhibition of sorbose transfer in human erythrocytes by glucose.
    Levine M; Levine S; Jones MN
    Biochim Biophys Acta; 1971 Feb; 225(2):291-300. PubMed ID: 5552812
    [No Abstract]   [Full Text] [Related]  

  • 15. On the temperature dependence of initial velocities of glucose transport in the human red blood cell.
    Hankin BL; Stein WD
    Biochim Biophys Acta; 1972 Oct; 288(1):127-36. PubMed ID: 4640380
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetic parameters of glucose efflux from human red blood cells under zero-trans conditions.
    Karlish SJ; Lieb WR; Ram D; Stein WD
    Biochim Biophys Acta; 1972 Jan; 255(1):126-32. PubMed ID: 5010989
    [No Abstract]   [Full Text] [Related]  

  • 17. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport.
    Wheeler TJ; Whelan JD
    Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose transport in human erythrocytes measured using 13C NMR spin transfer.
    Kuchel PW; Chapman BE; Potts JR
    FEBS Lett; 1987 Jul; 219(1):5-10. PubMed ID: 3595881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin.
    Bunn HF; Ransil BJ; Chao A
    J Biol Chem; 1971 Sep; 246(17):5273-9. PubMed ID: 5094669
    [No Abstract]   [Full Text] [Related]  

  • 20. A Fickian diffusion transport process with features of transport catalysis. Doxorubicin transport in human red blood cells.
    Dalmark M; Storm HH
    J Gen Physiol; 1981 Oct; 78(4):349-64. PubMed ID: 7288392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.