These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4756139)

  • 21. Pentazocine analgesia and regional rat brain catecholamines.
    Paalzow G; Paalzow L; Stalby B
    Eur J Pharmacol; 1974 Jun; 27(1):78-88. PubMed ID: 4152989
    [No Abstract]   [Full Text] [Related]  

  • 22. Regional differences in the long-term effect of neonatal 6-hydroxydopa treatment on rat brain noradrenaline.
    Zieher LM; Jaim-Etcheverry G
    Brain Res; 1973 Sep; 60(1):199-207. PubMed ID: 4744760
    [No Abstract]   [Full Text] [Related]  

  • 23. The effects of repeated D-lysergic acid diethylamide injections on catecholamine levels and tyrosine hydroxylase activity in rat brain regions.
    Peters DA; Tang S
    J Neurochem; 1977 Jan; 28(1):59-62. PubMed ID: 13158
    [No Abstract]   [Full Text] [Related]  

  • 24. ET495 and brain catecholamine mechanisms: evidence for stimulation of dopamine receptors.
    Corrodi H; Farnebo LO; Fuxe K; Hamberger B; Ungerstedt U
    Eur J Pharmacol; 1972 Nov; 20(2):195-204. PubMed ID: 4651208
    [No Abstract]   [Full Text] [Related]  

  • 25. Role of limbic system in the control of hamster growth.
    Borer KT; Trulson ME; Kuhns LR
    Brain Res Bull; 1979; 4(2):239-47. PubMed ID: 466511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Psychotropic drugs and dopamine uptake inhibition.
    Halaris AE; Freedman DX
    Res Publ Assoc Res Nerv Ment Dis; 1975; 54():247-58. PubMed ID: 3829
    [No Abstract]   [Full Text] [Related]  

  • 27. Increased susceptibility to seizures and decreased catecholamine turnover in spontaneously hypertensive rats.
    Goldberg ME; Milmore JE; Haubrich MK; Haubrich DR
    Eur J Pharmacol; 1975; 33(2):389-93. PubMed ID: 1183483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of beta-endorphin on catecholamine levels in the rat hypothalamus and cerebral cortex].
    Slavnov VN; Valueva GV; Markov VV; Luchitskiĭ EV
    Biull Eksp Biol Med; 1986 May; 101(5):562-4. PubMed ID: 2939890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Release of endogenous catecholamines from isolated rat brain tissue by fenfluramine and N-ethylamphetamine--effects of pargyline.
    Tessel RE; Burgess SK; Rutledge CO
    Biochem Pharmacol; 1978; 27(12):1631-6. PubMed ID: 697904
    [No Abstract]   [Full Text] [Related]  

  • 30. Amphetamine: evaluation of d- and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex.
    Heikkila RE; Orlansky H; Mytilineou C; Cohen G
    J Pharmacol Exp Ther; 1975 Jul; 194(1):47-56. PubMed ID: 1151755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuropeptide Y in the stria terminalis: evidence for an amygdalofugal projection.
    Allen YS; Roberts GW; Bloom SR; Crow TJ; Polak JM
    Brain Res; 1984 Nov; 321(2):357-62. PubMed ID: 6548654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional 5-hydroxytryptamine following selective midbrain raphe lesions in the rat.
    Lorens SA; Guldberg HC
    Brain Res; 1974 Sep; 78(1):45-56. PubMed ID: 4458916
    [No Abstract]   [Full Text] [Related]  

  • 33. The association of lesion-induced reductions in brain monoamines with alterations in striatal carbohydrate metabolism.
    Hoffmann PC; Toon R; Kleinman J; Heller A
    J Neurochem; 1973 Jan; 20(1):69-80. PubMed ID: 4687208
    [No Abstract]   [Full Text] [Related]  

  • 34. Histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle.
    Garbarg M; Barbin G; Feger J; Schwartz JC
    Science; 1974 Nov; 186(4166):833-5. PubMed ID: 4157144
    [No Abstract]   [Full Text] [Related]  

  • 35. Comparative effects of dl-p-methoxyamphetamine and d-amphetamine on catecholamine release and reuptake in vitro.
    Tseng LF; Hitzemann RJ; Loh HH
    J Pharmacol Exp Ther; 1974 Jun; 189(3):708-16. PubMed ID: 4843169
    [No Abstract]   [Full Text] [Related]  

  • 36. The accumulation of p-hydroxyamphetamine by brain homogenates and its role in the release of catecholamines.
    Cho AK; Fischer JF; Schaeffer JC
    Biochem Pharmacol; 1977 Aug; 26(15):1367-72. PubMed ID: 901551
    [No Abstract]   [Full Text] [Related]  

  • 37. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method.
    Lindvall O; Björklund A
    Acta Physiol Scand Suppl; 1974; 412():1-48. PubMed ID: 4531814
    [No Abstract]   [Full Text] [Related]  

  • 38. Catecholamine innervation of the basal forebrain. III. Olfactory bulb, anterior olfactory nuclei, olfactory tubercle and piriform cortex.
    Fallon JH; Moore RY
    J Comp Neurol; 1978 Aug; 180(3):533-44. PubMed ID: 307009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of acute and chronic treatment with triiodothyronine and thyroxine on the hypothalamic and telencephalic catecholamine nerve terminal systems of the hypophysectomized male rat. Chronic treatment modulates catecholamine utilization in discrete catecholamine nerve terminal systems.
    Andersson K; Eneroth P
    Neuroendocrinology; 1985 May; 40(5):398-408. PubMed ID: 4010888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ventromedial hypothalamic lesions and brain catecholamines.
    Glick SD; Greenstein S; Waters DH
    Pharmacol Biochem Behav; 1973; 1(5):591-2. PubMed ID: 4524529
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.