These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 476115)
41. Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex. Lücke H; Stange G; Murer H Biochem J; 1979 Jul; 182(1):223-9. PubMed ID: 91368 [TBL] [Abstract][Full Text] [Related]
42. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles. Rajendran VM; Ansari SA; Harig JM; Adams MB; Khan AH; Ramaswamy K Gastroenterology; 1985 Dec; 89(6):1298-304. PubMed ID: 4054522 [TBL] [Abstract][Full Text] [Related]
43. Transport of 5-oxoproline into rabbit renal brush border membrane vesicles. Ganapathy V; Roesel RA; Leibach FH Biochem Biophys Res Commun; 1982 Mar; 105(1):28-35. PubMed ID: 7092855 [No Abstract] [Full Text] [Related]
44. Na+ + Cl- -gradient-driven, high-affinity, uphill transport of taurine in human placental brush-border membrane vesicles. Miyamoto Y; Balkovetz DF; Leibach FH; Mahesh VB; Ganapathy V FEBS Lett; 1988 Apr; 231(1):263-7. PubMed ID: 3360130 [TBL] [Abstract][Full Text] [Related]
45. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium. Hilden S; Sacktor B Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244 [TBL] [Abstract][Full Text] [Related]
46. Hydrolysis and transport of proline-containing peptides in renal brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl peptidase IV-negative rat strains. Tiruppathi C; Miyamoto Y; Ganapathy V; Roesel RA; Whitford GM; Leibach FH J Biol Chem; 1990 Jan; 265(3):1476-83. PubMed ID: 1967253 [TBL] [Abstract][Full Text] [Related]
47. Renal brush-border-membrane vesicles prepared from newborn rats by free-flow electrophoresis and their proline uptake. Medow MS; Roth KS; Ginkinger K; Segal S Biochem J; 1983 Jul; 214(1):209-14. PubMed ID: 6615465 [TBL] [Abstract][Full Text] [Related]
48. Sulfate transport in brush border membrane vesicles prepared from human placental syncytiotrophoblast. Cole DE Biochem Biophys Res Commun; 1984 Aug; 123(1):223-9. PubMed ID: 6477580 [TBL] [Abstract][Full Text] [Related]
49. Mechanism of L-malate transport in rat renal basolateral membrane vesicles. Kahn AM; Branham S; Weinman EJ Am J Physiol; 1984 Jun; 246(6 Pt 2):F779-84. PubMed ID: 6742128 [TBL] [Abstract][Full Text] [Related]
50. Sodium gradient-stimulated transport of L-carnitine into renal brush border membrane vesicles: kinetics, specificity, and regulation by dietary carnitine. Rebouche CJ; Mack DL Arch Biochem Biophys; 1984 Dec; 235(2):393-402. PubMed ID: 6517597 [TBL] [Abstract][Full Text] [Related]
51. Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles. Miyauchi S; Abbot EL; Zhuang L; Subramanian R; Ganapathy V; Thwaites DT Mol Membr Biol; 2005; 22(6):549-59. PubMed ID: 16373326 [TBL] [Abstract][Full Text] [Related]
52. The effect on amino acid transport of trypsin treatment of rat renal brush border membranes. Hsu BY; Corcoran SM; Marshall CM; Segal S Biochim Biophys Acta; 1982 Jul; 689(2):181-93. PubMed ID: 7115706 [TBL] [Abstract][Full Text] [Related]
53. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Cheng L; Sacktor B J Biol Chem; 1981 Feb; 256(4):1556-64. PubMed ID: 7462213 [No Abstract] [Full Text] [Related]
54. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye. Wright SH; Krasne S; Kippen I; Wright EM Biochim Biophys Acta; 1981 Feb; 640(3):767-78. PubMed ID: 7213704 [TBL] [Abstract][Full Text] [Related]
55. Chloride and membrane potential dependence of sodium ion-proline symport. Chesney RW; Zelikovic I; Budreau A; Randle D J Am Soc Nephrol; 1991 Oct; 2(4):885-93. PubMed ID: 1751792 [TBL] [Abstract][Full Text] [Related]
56. Glycine transport into plasma-membrane vesicles derived from rat brain synaptosomes. Mayor F; Marvizón JG; Aragón MC; Gimenez C; Valdivieso F Biochem J; 1981 Sep; 198(3):535-41. PubMed ID: 7326021 [TBL] [Abstract][Full Text] [Related]
57. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes. Bindels RJ; van den Broek LA; van Os CH Biochim Biophys Acta; 1987 Feb; 897(1):83-92. PubMed ID: 3099845 [TBL] [Abstract][Full Text] [Related]
58. Evidence for a dipeptide transport system in renal brush border membranes from rabbit. Ganapathy V; Mendicino J; Leibach FH Biochim Biophys Acta; 1981 Apr; 642(2):381-91. PubMed ID: 7284363 [TBL] [Abstract][Full Text] [Related]
59. Developmental maturation of Na(+)-H+ exchange in rat renal tubular brush-border membrane. Zelikovic I; Stejskal E; Lohstroh P; Budreau A; Chesney RW Am J Physiol; 1991 Dec; 261(6 Pt 2):F1017-25. PubMed ID: 1661079 [TBL] [Abstract][Full Text] [Related]
60. Na+ and pH dependence of proline and beta-alanine absorption in rat small intestine. Iñigo C; Barber A; Lostao MP Acta Physiol (Oxf); 2006 Apr; 186(4):271-8. PubMed ID: 16634782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]