These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 4761512)

  • 1. The development of a hypothalamic monoaminergic system for the regulation of the Pars intermedia activity in Xenopus laevis.
    Terlou M; van Straaten HW
    Z Zellforsch Mikrosk Anat; 1973; 143(2):229-38. PubMed ID: 4761512
    [No Abstract]   [Full Text] [Related]  

  • 2. Hypothalamic control of the pars intermedia in Xenopus laevis tadpoles.
    Goos HJ
    Z Zellforsch Mikrosk Anat; 1969; 97(1):118-24. PubMed ID: 5799953
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of long-term exposure to an illuminated white background on the MSH content of the pituitary of Xenopus laevis.
    Chong LK
    Comp Gen Pharmacol; 1973 Jun; 4(14):157-66. PubMed ID: 4770273
    [No Abstract]   [Full Text] [Related]  

  • 4. The ontogenesis of monoaminergic nerve fibres in the hypophysis of Rana temporaria with special reference to the pars distalis.
    Aronsson S
    Cell Tissue Res; 1976 Sep; 171(4):437-48. PubMed ID: 1086140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pharmacological agents on the hypothalamus of Rana pipiens in relation to the control of skin melanophores.
    Dierst-Davies K; Ralph CL; Pechersky JL
    Gen Comp Endocrinol; 1966 Jun; 6(3):409-19. PubMed ID: 5963169
    [No Abstract]   [Full Text] [Related]  

  • 6. [THE ROLE OF CATECHOLAMINES IN THE CONTROL OF HYPOTHALAMIC NEUROSECRETION. EFFECTS OF RESERPINE, A MONOAMINE OXIDASE INHIBITOR AND DIFFERENT D-1 DOPA 5-HTP DECARBOXYLASE INHIBITORS].
    SOULAIRAC A; SOULAIRAC ML
    Agressologie; 1964; 5():465-71. PubMed ID: 14192332
    [No Abstract]   [Full Text] [Related]  

  • 7. Control of pars intermedia activity in late embryos of the spiny dogfish, Squalus acanthias.
    Meurling P; Klefbohm B
    Cell Tissue Res; 1974; 155(2):221-9. PubMed ID: 4442113
    [No Abstract]   [Full Text] [Related]  

  • 8. [THE ROLE OF CATECHOLAMINES IN THE CONTROL OF HYPOTHALAMIC NEUROSECRETION. EFFECTS OF RESERPINE COMPOUNDS, MONOAMINE OXIDASE INHIBITORS AND D-1 DOPA 5-HTP DECARBOXYLASE INHIBITORS].
    CAHN J; HEROLD M
    Agressologie; 1964; 5():451-63. PubMed ID: 14192331
    [No Abstract]   [Full Text] [Related]  

  • 9. Hypothalamic and cerebral cortical inhibitors of a melanocyte-stimulating substance secreted by the pars distalis of the frog pituitary gland.
    Bercu BB; Brinkley HJ
    Experientia; 1969 Aug; 25(8):879-80. PubMed ID: 4900011
    [No Abstract]   [Full Text] [Related]  

  • 10. Monoamines and control of the pars intermedia of the toad pituitary.
    Iturriza FC
    Gen Comp Endocrinol; 1966 Feb; 6(1):19-25. PubMed ID: 5946401
    [No Abstract]   [Full Text] [Related]  

  • 11. [Elaboration of intermedin by the cells stained with lead hematoxyline in the pars intermedia of the eel: new proofs and hypothalamic control].
    Olivereau M
    C R Acad Hebd Seances Acad Sci D; 1971 Jan; 272(1):102-5. PubMed ID: 4101764
    [No Abstract]   [Full Text] [Related]  

  • 12. Stereological analysis of the effects of 6-hydroxydopamine on the ultrastructure of the melanocyte-stimulating hormone cell of the pars intermedia of the pituitary of Xenopus laevis.
    Volcanes B; Weatherhead B
    Gen Comp Endocrinol; 1976 Feb; 28(2):205-12. PubMed ID: 1269902
    [No Abstract]   [Full Text] [Related]  

  • 13. Formation of a melanocyte-stimulating hormone-release inhibiting factor by hypothalamic extracts from rats.
    Celis ME; Taleisnik S
    Int J Neurosci; 1971 Apr; 1(4):223-30. PubMed ID: 4949884
    [No Abstract]   [Full Text] [Related]  

  • 14. Hypothalamic neurosecretion and metamorphosis in Xenopus laevis. I. The effect of propylthiouracil.
    Goos HJ; de Knecht AM; de Vries J
    Z Zellforsch Mikrosk Anat; 1968; 86(3):384-92. PubMed ID: 4179072
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of background adaptation, length of exposure time and hypophysectomy on the quantity of melanophore stimulating substances in the hypothalamo hypophyseal complex of Rana pipiens.
    Preslock JP; Bercu BB; Brinkley HJ
    Gen Comp Endocrinol; 1972 Oct; 19(2):313-9. PubMed ID: 4539045
    [No Abstract]   [Full Text] [Related]  

  • 16. The distribution of monoamine oxidase and acetylcholinesterase in the brain of Xenopus laevis tadpoles.
    Terlou M; Stroband HW
    Z Zellforsch Mikrosk Anat; 1973 Jun; 140(2):261-75. PubMed ID: 4728847
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for a doubly innervated secretory unit in the anuran pars intermedia. I. Electrophysiologic studies.
    Oshima K; Gorbman A
    Gen Comp Endocrinol; 1969 Aug; 13(1):98-107. PubMed ID: 5804513
    [No Abstract]   [Full Text] [Related]  

  • 18. Distribution of opioid peptides in the pituitary: a new hypothalamic-pars nervosa enkephalinergic pathway.
    Rossier J; Pittman Q; Bloom F; Guillemin R
    Fed Proc; 1980 Jun; 39(8):2555-60. PubMed ID: 6103825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relation between the caudo-dorsal region of the preoptic nucleus and the pars nervosa of the pituitary gland in Xenopus lavis tadpoles. An investigation based on hypothalamic lesions.
    Notenboom CD
    Cell Tissue Res; 1974 Jun; 149(4):457-71. PubMed ID: 4603144
    [No Abstract]   [Full Text] [Related]  

  • 20. [Physiological role of the adrenergic elements of the hypothalamus in regulating the hypothalamo-adenohypophyseal adaptation systems].
    Rasin MS
    Usp Fiziol Nauk; 1985; 16(1):96-114. PubMed ID: 2983506
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.