These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 4761576)
1. Fluctuations and noise in kinetic systems. Application to K+ channels in the squid axon. Chen YD; Hill TL Biophys J; 1973 Dec; 13(12):1276-95. PubMed ID: 4761576 [TBL] [Abstract][Full Text] [Related]
2. On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K + channels. Hill TL; Chen YD Biophys J; 1972 Aug; 12(8):948-59. PubMed ID: 5044583 [TBL] [Abstract][Full Text] [Related]
3. Delayed kinetics of squid axon potassium channels do not always superpose after time translation. Clay JR; Shlesinger MF Biophys J; 1982 Mar; 37(3):677-80. PubMed ID: 6280785 [TBL] [Abstract][Full Text] [Related]
4. Response of delayed (K+) channels to the time-dependent clamping function in squid giant axon. I. Ascending ramps. Starzak ME; Senft JP; Starzak RJ Physiol Chem Phys; 1977; 9(6):513-32. PubMed ID: 614592 [TBL] [Abstract][Full Text] [Related]
5. Isomorphism on a physical system of the Hodgkin-Huxley equations for potassium conductance. Strandberg MW J Theor Biol; 1985 Nov; 117(2):161-85. PubMed ID: 2417063 [TBL] [Abstract][Full Text] [Related]
7. Relaxation spectra of potassium channel noise from squid axon membranes. Fishman HM Proc Natl Acad Sci U S A; 1973 Mar; 70(3):876-9. PubMed ID: 4514998 [TBL] [Abstract][Full Text] [Related]
8. K+ conduction description from the low frequency impedance and admittance of squid axon. Fishman HM; Poussart DJ; Moore LE; Siebenga E J Membr Biol; 1977 Apr; 32(3-4):255-90. PubMed ID: 864680 [TBL] [Abstract][Full Text] [Related]
10. A single-file model for potassium transport in squid giant axon. Simulation of potassium currents at normal ionic concentrations. Kohler HH Biophys J; 1977 Aug; 19(2):125-40. PubMed ID: 880331 [TBL] [Abstract][Full Text] [Related]
11. Solid state physical replacement of Hodgkin-Huxley theory. Phase transformation kinetics of axonal potassium conductance. Cope FW Physiol Chem Phys; 1977; 9(2):155-60. PubMed ID: 601107 [TBL] [Abstract][Full Text] [Related]
12. Determination of K(+)-channel relaxation times in squid axon membrane by Hodgkin-Huxley and by direct linear analysis. Fishman HM; Lipicky RJ Biophys Chem; 1991 Feb; 39(2):177-90. PubMed ID: 2059666 [TBL] [Abstract][Full Text] [Related]
13. Potassium and sodium current noise from squid axon membranes. DeFelice LJ; Wanke E; Conti F Fed Proc; 1975 Apr; 34(5):1338-42. PubMed ID: 1123089 [TBL] [Abstract][Full Text] [Related]
16. K+ conduction phenomena applicable to the low frequency impedance of squid axon. Grisell RD; Fishman HM J Membr Biol; 1979 Apr; 46(1):1-25. PubMed ID: 448729 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of activation of the potassium conductance in the squid giant axon. Keynes RD; Kimura JE; Greeff NG Proc R Soc Lond B Biol Sci; 1988 Jan; 232(1269):375-94. PubMed ID: 2895477 [TBL] [Abstract][Full Text] [Related]
18. Slow inactivation and reactivation of the K+ channel in squid axons. A tail current analysis. Clay JR Biophys J; 1989 Mar; 55(3):407-14. PubMed ID: 2930827 [TBL] [Abstract][Full Text] [Related]
19. Potassium ion accumulation slows the closing rate of potassium channels in squid axons. Clay JR Biophys J; 1986 Jul; 50(1):197-200. PubMed ID: 2425857 [TBL] [Abstract][Full Text] [Related]
20. Potassium channel kinetics in squid axons with elevated levels of external potassium concentration. Clay JR Biophys J; 1984 Feb; 45(2):481-5. PubMed ID: 6320918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]