These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 4761708)

  • 1. The effect of thiamine deficiency on the acetylcoenzyme A and acetylcholine levels in the rat brain.
    Heinrich CP; Stadler H; Weiser H
    J Neurochem; 1973 Nov; 21(5):1273-81. PubMed ID: 4761708
    [No Abstract]   [Full Text] [Related]  

  • 2. Normal levels of acetyl coenzyme A and of acetylcholine in the brains of thiamin-deficient rats.
    Reynolds SF; Blass JP
    J Neurochem; 1975 Jan; 24(1):185-6. PubMed ID: 1110361
    [No Abstract]   [Full Text] [Related]  

  • 3. Choline acetyltransferase. Inhibition by thiol reagents.
    Roskoski R
    J Biol Chem; 1974 Apr; 249(7):2156-9. PubMed ID: 4856436
    [No Abstract]   [Full Text] [Related]  

  • 4. Choline acetyltransferase: reversible inhibition by bromoacetyl coenzyme A and bromoacetylcholine.
    Roskoski R
    Biochemistry; 1974 May; 13(11):2295-8. PubMed ID: 4857567
    [No Abstract]   [Full Text] [Related]  

  • 5. Brain levels and turnover rates of presumptive neurotransmitters as influenced by administration and withdrawal of ethanol in mice.
    Rawat AK
    J Neurochem; 1974 Jun; 22(6):915-22. PubMed ID: 4850820
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of actinomycin D on rat brain acetylcholine and cholinergic enzymes.
    Domino EF; Wilson AE; Mohrman ME
    Arch Int Pharmacodyn Ther; 1974 Dec; 212(2):310-6. PubMed ID: 4447411
    [No Abstract]   [Full Text] [Related]  

  • 7. Acetyl-CoA and acetylcholine metabolism in nerve terminal compartment of thiamine deficient rat brain.
    Jankowska-Kulawy A; Bielarczyk H; Pawełczyk T; Wróblewska M; Szutowicz A
    J Neurochem; 2010 Oct; 115(2):333-42. PubMed ID: 20649840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of thiamine deficiency on thiamine-dependent enzymes in regions of the brain of pregnant rats and their offspring.
    Fournier H; Butterworth RF
    Metab Brain Dis; 1990 Jun; 5(2):77-84. PubMed ID: 2385216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo.
    Tucek S; Cheng SC
    J Neurochem; 1974 Jun; 22(6):893-914. PubMed ID: 4853931
    [No Abstract]   [Full Text] [Related]  

  • 10. Distribution of acetylcholine, choline, choline acetyltransferase and acetylcholinesterase in regions and single identified axons of the lobster nervous system.
    Hildebrand JG; Townsel JG; Kravitz EA
    J Neurochem; 1974 Nov; 23(5):951-63. PubMed ID: 4215870
    [No Abstract]   [Full Text] [Related]  

  • 11. The utilization of choline and acetyl coenzyme A for the synthesis of acetylcholine.
    Jope RS; Jenden DJ
    J Neurochem; 1980 Aug; 35(2):318-25. PubMed ID: 7452263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of acetyl-CoA in specific areas of the CNS of the rat as measured by a modification of a radio-enzymatic assay for acetylcholine and choline.
    Shea PA; Aprison MH
    J Neurochem; 1977 Jan; 28(1):51-8. PubMed ID: 833604
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolism of brain acetylcholine and its modification by drugs.
    Hrdina PD
    Drug Metab Rev; 1974; 3(1):89-129. PubMed ID: 4609708
    [No Abstract]   [Full Text] [Related]  

  • 14. Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal.
    Gibson GE; Ksiezak-Reding H; Sheu KF; Mykytyn V; Blass JP
    Neurochem Res; 1984 Jun; 9(6):803-14. PubMed ID: 6149477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An enzymatic method for measuring picomole quantities of acetylcholine and choline in CNS tissue.
    Shea PA; Aprison MH
    Anal Biochem; 1973 Nov; 56(1):165-77. PubMed ID: 4358017
    [No Abstract]   [Full Text] [Related]  

  • 16. Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy: 1. The pyruvate dehydrogenase complex.
    Butterworth RF; Giguere JF; Besnard AM
    Neurochem Res; 1985 Oct; 10(10):1417-28. PubMed ID: 4069311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a deficiency of thiamine on brain pyruvate dehydrogenase: enzyme assay by three different methods.
    Elnageh KM; Gaitonde MK
    J Neurochem; 1988 Nov; 51(5):1482-9. PubMed ID: 3139833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choline acetyltransferase and acetylcholinesterase: evidence for essential histidine residues.
    Roskoski R
    Biochemistry; 1974 Dec; 13(25):5141-4. PubMed ID: 4474001
    [No Abstract]   [Full Text] [Related]  

  • 19. Transketolase, pyruvate and oxoglutarate dehydrogenase activities and [14C]thiamin turnover in tissues of mice fed thiamin-deficient diet.
    Trebukhina RV; Ostrovsky YM; Mikhaltsevich GN; Velichko MG; Tumanov VN
    J Nutr; 1983 Jul; 113(7):1285-91. PubMed ID: 6864328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histochemistry of choline acetyltransferase: a critical analysis.
    Burt AM; Silver A
    Brain Res; 1973 Nov; 62(2):509-16. PubMed ID: 4760518
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.