These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 476264)

  • 1. Calculation of blood velocity and pressure in stenosed renal artery considered as a Venturi tube.
    Collard M; Guey A
    Biomedicine; 1979 Jun; 30(2):108-12. PubMed ID: 476264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On hemodynamic measurements during reconstruction of the stenosed renal artery.
    Sander S; Myhre HO
    J Oslo City Hosp; 1975 Apr; 25(4):73-9. PubMed ID: 1127495
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effective perfusion area of renal artery stenosis in experiment].
    Beránek I; Rosenbusch G
    Z Exp Chir; 1972; 5(1):28-39. PubMed ID: 4680966
    [No Abstract]   [Full Text] [Related]  

  • 4. [Hemodynamics during catheter-measurement of pressure difference in experiment].
    Beránek I
    Z Exp Chir; 1971; 4(1):37-45. PubMed ID: 5162939
    [No Abstract]   [Full Text] [Related]  

  • 5. [Possibilities of relative and absolute estimation on the degree of reduction of the perfusion caused by stenoses of a terminal artery of the type of the renal artery. Theoretical postulates].
    Beránek I
    Cas Lek Cesk; 1974 Jul; 113(28):858-62. PubMed ID: 4849429
    [No Abstract]   [Full Text] [Related]  

  • 6. [Blood flow in a renal artery with a deformed vessel wall].
    Kozhevnikov AA; Arabidze GG; Matveeva LS
    Biofizika; 1977; 22(2):318-22. PubMed ID: 861271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of blood flow through stenosed carotid, renal and coronary arteries.
    Ekeström S; Bertranou E; Samnegård H
    Scand J Thorac Cardiovasc Surg; 1973; 7(2):167-70. PubMed ID: 4542993
    [No Abstract]   [Full Text] [Related]  

  • 8. [Method of electromagnetic flowmetry in the evaluation of reconstructive operations on the renal artery].
    Kniazeva TA; Sandrikov VA
    Urol Nefrol (Mosk); 1974; (2):19-22. PubMed ID: 4446145
    [No Abstract]   [Full Text] [Related]  

  • 9. Renal artery stenosis: extracting quantitative parameters with a mathematical model fitted to magnetic resonance blood flow data.
    Larsson M; Persson A; Eriksson P; Kihlberg J; Smedby O
    J Magn Reson Imaging; 2008 Jan; 27(1):140-7. PubMed ID: 18050354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal hemodynamics and function in response to renal artery occlusion in canine and primate kidneys.
    Hinshaw LB; Archer LL; Parry WL; Shires TK
    Invest Urol; 1970 Mar; 7(5):422-32. PubMed ID: 4985580
    [No Abstract]   [Full Text] [Related]  

  • 12. Functional picture of the canine kidney with collateral circulation.
    Eliska O; Schück O
    Cor Vasa; 1966; 8(4):288-94. PubMed ID: 5958742
    [No Abstract]   [Full Text] [Related]  

  • 13. Vasodilator response in the ischemic kidney.
    Malindzak GS; Schmid HE; McCurdy JA; Orr GB
    Invest Urol; 1972 Jan; 9(4):324-8. PubMed ID: 4621717
    [No Abstract]   [Full Text] [Related]  

  • 14. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling.
    Kagadis GC; Skouras ED; Bourantas GC; Paraskeva CA; Katsanos K; Karnabatidis D; Nikiforidis GC
    Med Eng Phys; 2008 Jun; 30(5):647-60. PubMed ID: 17714975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Possiblities of relative and absolute estimation on the degree of reduction of the perfusion caused by stenoses of the terminal artery of the type of the renal artery. Experimental study].
    Beránek I
    Cas Lek Cesk; 1974 Jul; 113(29):891-6. PubMed ID: 4846253
    [No Abstract]   [Full Text] [Related]  

  • 17. Linear vs. quadratic relationship between pressure gradient and peak systolic velocity in renal artery stenosis.
    Dieter RS
    Catheter Cardiovasc Interv; 2007 Mar; 69(4):607; author reply 607-8. PubMed ID: 17295336
    [No Abstract]   [Full Text] [Related]  

  • 18. Transport of sodium by the renal lymphatics during elevated central venous pressures.
    Cockett AT; Katz YJ; Moore RS
    Invest Urol; 1968 Mar; 5(5):483-91. PubMed ID: 5651067
    [No Abstract]   [Full Text] [Related]  

  • 19. Adrenal-renal portal circulation contributes to decrease in renal blood flow after renal artery stenosis in rats.
    Ziecina R; Abramczyk P; Lisiecka A; Papierski K; Przybylski J
    J Physiol Pharmacol; 1998 Dec; 49(4):553-60. PubMed ID: 10069696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of the severity of arterial stenosis by pressure gradient measurement.
    Killen DA; Oh SU
    Am Surg; 1968 May; 34(5):341-9. PubMed ID: 5644344
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.