These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 4764322)

  • 21. Correspondence between sharp tuning and two-tone inhibition in primary auditory neurones.
    Robertson D
    Nature; 1976 Feb; 259(5543):477-8. PubMed ID: 1256545
    [No Abstract]   [Full Text] [Related]  

  • 22. Rapid development of tuning characteristics of inferior colliculus neurons of mouse pups.
    Willott JF; Shnerson A
    Brain Res; 1978 Jun; 148(1):230-3. PubMed ID: 656927
    [No Abstract]   [Full Text] [Related]  

  • 23. A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones.
    Kim DO; Molnar CE
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):16-30. PubMed ID: 430109
    [No Abstract]   [Full Text] [Related]  

  • 24. Cochlear microphonics in the adult domestic fowl (Gallus domesticus).
    Gates GR; Perry DR; Coles RB
    Comp Biochem Physiol A Comp Physiol; 1975 May; 51(1A):251-2. PubMed ID: 236882
    [No Abstract]   [Full Text] [Related]  

  • 25. Auditory responses from the medulla of the monitor lizard Varanus bengalensis.
    Manly GA
    Brain Res; 1976 Feb; 102(2):329-34. PubMed ID: 1247889
    [No Abstract]   [Full Text] [Related]  

  • 26. Structure and function of cochlear afferent innervation.
    Meyer AC; Moser T
    Curr Opin Otolaryngol Head Neck Surg; 2010 Oct; 18(5):441-6. PubMed ID: 20802334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical potentials from the inner ear in man, in response to transient sounds generated in a closed acoustic system.
    Elberling C; Salomon G
    Rev Laryngol Otol Rhinol (Bord); 1971 Nov; 92():Suppl:691-707. PubMed ID: 5148986
    [No Abstract]   [Full Text] [Related]  

  • 28. Cochleotopic organization of primary auditory cortex in the cat.
    Merzenich MM; Knight PL; Roth GL
    Brain Res; 1973 Dec; 63():343-6. PubMed ID: 4764302
    [No Abstract]   [Full Text] [Related]  

  • 29. Effects of alcohol on functional development of the auditory pathway in the brainstem of infants and chick embryos.
    Pettigrew AG; Hutchinson I
    Ciba Found Symp; 1984; 105():26-46. PubMed ID: 6563990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent.
    Garcia-Pino E; Caminos E; Juiz JM
    J Comp Neurol; 2010 Apr; 518(8):1301-14. PubMed ID: 20151361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Initial discharge latency and threshold considerations for some neurons in cochlear nuclear complex of the cat.
    Kitzes LM; Gibson MM; Rose JE; Hind JE
    J Neurophysiol; 1978 Sep; 41(5):1165-82. PubMed ID: 212537
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of electrical stimulation on the acoustically evoked auditory-nerve response in guinea pigs with a high-frequency hearing loss.
    Stronks HC; Versnel H; Prijs VF; Grolman W; Klis SF
    Hear Res; 2011 Feb; 272(1-2):95-107. PubMed ID: 21044671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: implications for development of the place principle.
    Lippe W; Rubel EW
    J Comp Neurol; 1985 Jul; 237(2):273-89. PubMed ID: 4031125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct electrical stimulation of the cochlear nucleus: surface vs. penetrating stimulation.
    el-Kashlan HK; Niparko JK; Altschuler RA; Miller JM
    Otolaryngol Head Neck Surg; 1991 Oct; 105(4):533-43. PubMed ID: 1762791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Input-output curves of low and high spontaneous rate auditory nerve fibers are exponential near threshold.
    Horst JW; McGee J; Walsh EJ
    Hear Res; 2018 Sep; 367():195-206. PubMed ID: 30135035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cochlear afferent innervation development.
    Delacroix L; Malgrange B
    Hear Res; 2015 Dec; 330(Pt B):157-69. PubMed ID: 26231304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of neonatal cochlear removal on the development of mouse cochlear nucleus. III. Its efferent projections to inferior colliculus.
    Trune DR
    Brain Res; 1983 Jul; 285(1):1-12. PubMed ID: 6883124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters.
    Rajan R
    J Neurophysiol; 1988 Aug; 60(2):549-68. PubMed ID: 3171641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Receptive fields of neurons of primary auditory cortex neurons in the cat].
    Volkov IO; Dembnovetskiĭ OF
    Neirofiziologiia; 1981; 13(5):467-73. PubMed ID: 7300956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pedaudiometric technique in relation to the physiological development of the auditory system.
    Welzl-Müller K; Rauchegger H
    Folia Phoniatr (Basel); 1985; 37(5-6):232-7. PubMed ID: 4093084
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.