These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 476524)
1. Relationships among purine nucleoside metabolism, adenosine triphosphate catabolism, and glycolysis in human erythrocytes. Henderson JF; Zombor G; Burridge PW; Barankiewicz G; Smith CM Can J Biochem; 1979 Jun; 57(6):873-8. PubMed ID: 476524 [TBL] [Abstract][Full Text] [Related]
2. ATP depletion, purine riboside triphosphate accumulation and rat thymocyte death induced by purine riboside. Kozlowska M; Smolenski RT; Makarewicz W; Hoffmann C; Jastorff B; Swierczynski J Toxicol Lett; 1999 Feb; 104(3):171-81. PubMed ID: 10079051 [TBL] [Abstract][Full Text] [Related]
3. Purine nucleoside metabolism in the erythrocytes of patients with adenosine deaminase deficiency and severe combined immunodeficiency. Agarwal RP; Crabtree GW; Parks RE; Nelson JA; Keightley R; Parkman R; Rosen FS; Stern RC; Polmar SH J Clin Invest; 1976 Apr; 57(4):1025-35. PubMed ID: 947948 [TBL] [Abstract][Full Text] [Related]
4. [Effect of sodium fluoride and monoiodoacetic acid on glycolysis of human erythrocytes]. MANYAI S; SZEKELY M Acta Physiol Acad Sci Hung; 1954; 5(1-2):7-18. PubMed ID: 13147909 [No Abstract] [Full Text] [Related]
5. Studies of the regulation of purine nucleotide catabolism. Lomax CA; Bagnara AS; Henderson JF Can J Biochem; 1975 Feb; 53(2):231-41. PubMed ID: 164983 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of adenosine triphosphate catabolism induced by deoxyadenosine and by nucleoside analogues in adenosine deaminase-inhibited human erythrocytes. Bontemps F; Van den Berghe G Cancer Res; 1989 Sep; 49(18):4983-9. PubMed ID: 2788493 [TBL] [Abstract][Full Text] [Related]
7. Nucleotide catabolism and nucleoside cycles in human thymocytes. Role of orthophosphate. Barankiewicz J; Cohen A Biochem J; 1984 Apr; 219(1):197-203. PubMed ID: 6609703 [TBL] [Abstract][Full Text] [Related]
8. Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions. Sinclair CJ; LaRivière CG; Young JD; Cass CE; Baldwin SA; Parkinson FE J Neurochem; 2000 Oct; 75(4):1528-38. PubMed ID: 10987833 [TBL] [Abstract][Full Text] [Related]
9. Homo- and heteroexchange of adenine nucleotides and nucleosides in rat hippocampal slices by the nucleoside transport system. Sperlágh B; Szabó G; Erdélyi F; Baranyi M; Vizi ES Br J Pharmacol; 2003 Jun; 139(3):623-33. PubMed ID: 12788822 [TBL] [Abstract][Full Text] [Related]
10. C(2')-substituted purine nucleoside analogs. Interactions with adenosine deaminase and purine nucleoside phosphorylase and formation of analog nucleotides. Stoeckler JD; Bell CA; Parks RE; Chu CK; Fox JJ; Ikehara M Biochem Pharmacol; 1982 May; 31(9):1723-8. PubMed ID: 6809009 [TBL] [Abstract][Full Text] [Related]
11. Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation. Jurkowitz MS; Litsky ML; Browning MJ; Hohl CM J Neurochem; 1998 Aug; 71(2):535-48. PubMed ID: 9681443 [TBL] [Abstract][Full Text] [Related]
12. Studies on erythrocyte glycolysis. VI. Control of glycolysis by ATP level in human erythrocytes. Saito T; Minakami S J Biochem; 1967 Feb; 61(2):211-9. PubMed ID: 6058200 [No Abstract] [Full Text] [Related]
13. Mechanism of ATP catabolism induced by deoxyadenosine and other nucleosides in adenosine deaminase-inhibited human erythrocytes. Bontemps F; Van den Berghe G Adv Exp Med Biol; 1989; 253B():267-74. PubMed ID: 2558538 [No Abstract] [Full Text] [Related]
14. Effects of adenosine analogues on ATP concentrations in human erythrocytes. Further evidence for a route independent of adenosine kinase. Smolenski RT; Montero C; Duley JA; Simmonds HA Biochem Pharmacol; 1991 Oct; 42(9):1767-73. PubMed ID: 1930301 [TBL] [Abstract][Full Text] [Related]
15. Antimalarial action of nitrobenzylthioinosine in combination with purine nucleoside antimetabolites. Gero AM; Scott HV; O'Sullivan WJ; Christopherson RI Mol Biochem Parasitol; 1989 Apr; 34(1):87-97. PubMed ID: 2651920 [TBL] [Abstract][Full Text] [Related]
16. Chinese hamster ovary cell mutants specifically affected in the phosphorylation of C-purine nucleosides. Mehta KD; Gupta RS Can J Biochem Cell Biol; 1985 Sep; 63(9):1044-8. PubMed ID: 4075228 [TBL] [Abstract][Full Text] [Related]
17. Nucleoside transport in sheep erythrocytes: genetically controlled transport variation and its influence on erythrocyte ATP concentrations. Young JD J Physiol; 1978 Apr; 277():325-39. PubMed ID: 650536 [TBL] [Abstract][Full Text] [Related]
18. [GLYCOLYSIS OF INCUBATED ERYTHROCYTES IN VITRO AND THE EFFECT ON THIS OF THE SUBSTRATES GLUCOSE AND ADENOSINE]. QUARTODIPALO FM; SPINNLER HR; MOMBELLI L; BERTOLINI AM Acta Gerontol (Milano); 1963; 13():181-7. PubMed ID: 14106831 [No Abstract] [Full Text] [Related]
19. Effect of adenosine on glucose metabolism of Rana ridibunda erythrocytes. Kaloyianni M; Michaelidis B; Moutou K J Exp Biol; 1993 Apr; 177():41-50. PubMed ID: 8487000 [TBL] [Abstract][Full Text] [Related]
20. Adenine nucleotide metabolism and nucleoside transport in human erythrocytes under ATP depletion conditions. Plagemann PG; Wohlhueter RM; Kraupp M Biochim Biophys Acta; 1985 Jul; 817(1):51-60. PubMed ID: 3873962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]