These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 4768575)

  • 21. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol.
    Dorn E; Knackmuss HJ
    Biochem J; 1978 Jul; 174(1):85-94. PubMed ID: 697766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin.
    Hirose J; Kimura N; Suyama A; Kobayashi A; Hayashida S; Furukawa K
    FEMS Microbiol Lett; 1994 May; 118(3):273-7. PubMed ID: 8020752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The oxidative degradation of benzoate and catechol by Klebsiella aerogenes (Aerobacter aerogenes).
    Grant DJ
    Antonie Van Leeuwenhoek; 1970; 36(1):161-77. PubMed ID: 4987140
    [No Abstract]   [Full Text] [Related]  

  • 24. Tandem enzyme-catalysed oxidations of alkyl phenyl sulfides and alkyl benzenes: enantiocomplementary routes to chiral phenols.
    Boyd DR; Sharma ND; Ljubez V; Byrne BE; Shepherd SD; Allen CC; Kulakov LA; Larkin MJ; Dalton H
    Chem Commun (Camb); 2002 Sep; (17):1914-5. PubMed ID: 12271672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2.
    Murray K; Duggleby CJ; Sala-Trepat JM; Williams PA
    Eur J Biochem; 1972 Jul; 28(3):301-10. PubMed ID: 4342906
    [No Abstract]   [Full Text] [Related]  

  • 26. Oxidation of N-alkyl- and NN-dialkylhydroxylamines by partially purified preparations of trimethylamine mono-oxygenase from Pseudomonas aminovorans.
    Boulton CA; Large PJ
    FEBS Lett; 1975 Jul; 55(1):286-90. PubMed ID: 237794
    [No Abstract]   [Full Text] [Related]  

  • 27. Biocatalytic synthesis of polycatechols from toxic aromatic compounds.
    Ward G; Parales RE; Dosoretz CG
    Environ Sci Technol; 2004 Sep; 38(18):4753-7. PubMed ID: 15487783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications.
    Sala-Trepat JM; Murray K; Williams PA
    Eur J Biochem; 1972 Jul; 28(3):347-56. PubMed ID: 4342908
    [No Abstract]   [Full Text] [Related]  

  • 29. Initial reactions in the bacterial degradation of aromatic hydrocarbons.
    Gibson DT
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):157-68. PubMed ID: 998044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The meta-cleavage of catechol by a thermophilic Bacillus species.
    Buswell JA
    Biochem Biophys Res Commun; 1974 Oct; 60(3):934-41. PubMed ID: 4373000
    [No Abstract]   [Full Text] [Related]  

  • 31. New oxygenases in the degradation of flavones and flavanones by Pseudomonas putida.
    Schultz E; Engle FE; Wood JM
    Biochemistry; 1974 Apr; 13(8):1768-76. PubMed ID: 4831363
    [No Abstract]   [Full Text] [Related]  

  • 32. Metapyrocatechase. II. The role of iron and sulfhydryl groups.
    Nozaki M; Ono K; Nakazawa T; Kotani S; Hayaishi O
    J Biol Chem; 1968 May; 243(10):2682-90. PubMed ID: 5651642
    [No Abstract]   [Full Text] [Related]  

  • 33. Carbohydrate repression & effect of cyclic AMP on the synthesis of catechol oxygenase in Pseudomonas tabaci.
    Nagarajan M; Mahadevan A
    Indian J Exp Biol; 1979 Aug; 17(8):757-9. PubMed ID: 232481
    [No Abstract]   [Full Text] [Related]  

  • 34. The role of singlet oxygen in bilirubin photo-oxidation.
    McDonagh AF
    Biochem Biophys Res Commun; 1971 Sep; 44(6):1306-11. PubMed ID: 5168597
    [No Abstract]   [Full Text] [Related]  

  • 35. Oxoenoic acids as metabolites in the bacterial degradation of catechols.
    Bayly RC; Dagley S
    Biochem J; 1969 Feb; 111(3):303-7. PubMed ID: 5767053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1.
    Ridder L; Briganti F; Boersma MG; Boeren S; Vis EH; Scozzafava A; Veeger C; Rietjens IM
    Eur J Biochem; 1998 Oct; 257(1):92-100. PubMed ID: 9799107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol.
    Wallis MG; Chapman SK
    Biochem J; 1990 Mar; 266(2):605-9. PubMed ID: 2317207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 2. The role of protocatechuate as inducer.
    Cánovas JL; Wheelis ML; Stanier RY
    Eur J Biochem; 1968 Jan; 3(3):293-304. PubMed ID: 5645525
    [No Abstract]   [Full Text] [Related]  

  • 39. [Effectors of the enzymatic catabolism of pyrocatechol by pyrocatechase- and metapyrocatechase-forming mycobacteria].
    Lippelt CH; Bönicke R
    Zentralbl Bakteriol Orig; 1970; 213(1):81-92. PubMed ID: 5454247
    [No Abstract]   [Full Text] [Related]  

  • 40. Endogenous catechol thioethers may be pro-oxidant or antioxidant.
    Picklo MJ; Amarnath V; Graham DG; Montine TJ
    Free Radic Biol Med; 1999 Aug; 27(3-4):271-7. PubMed ID: 10468198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.