These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4769298)

  • 1. Rates of electron transfer and of non-cyclic photophosphorylation for chloroplasts isolated from maize populations selected for differences in juvenile productivity and in leaf widths.
    Hanson WD; Grier RE
    Genetics; 1973 Oct; 75(2):247-57. PubMed ID: 4769298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. 3. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II.
    Izawa S; Gould JM; Ort DR; Felker P; Good NE
    Biochim Biophys Acta; 1973 Apr; 305(1):119-28. PubMed ID: 4719595
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of manganese deficiency and added cerium on photochemical efficiency of maize chloroplasts.
    Qu C; Gong X; Liu C; Hong M; Wang L; Hong F
    Biol Trace Elem Res; 2012 Apr; 146(1):94-100. PubMed ID: 21979241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photophosphorylation in isolated maize bundle sheath chloroplasts and cells.
    Walker GH; Izawa S
    Plant Physiol; 1980 Apr; 65(4):685-90. PubMed ID: 16661262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the energy coupling sites of photophosphorylation. I. Separation of site I and site II by partial reactions of the chloroplast electron transport chain.
    Gould JM; Izawa S
    Biochim Biophys Acta; 1973 Aug; 314(2):211-23. PubMed ID: 4747066
    [No Abstract]   [Full Text] [Related]  

  • 6. Some characteristics of cyclic photophosphorylation in maize bundle sheath chloroplasts.
    Baltscheffsky M; Nyrén P; Strid A; Pramanik A
    Biochem Biophys Res Commun; 1988 Mar; 151(2):878-82. PubMed ID: 3348819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ferredoxin-catalyzed photosynthetic phosphorylations.
    Arnon DI; Chain RK
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4961-5. PubMed ID: 1746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the energy coupling sites of photophosphorylation. 3. The different effects of methylamine and ADP plus phosphate on electron transport through coupling sites I and II in isolated chloroplasts.
    Gould JM; Ort DR
    Biochim Biophys Acta; 1973 Oct; 325(1):157-66. PubMed ID: 4770727
    [No Abstract]   [Full Text] [Related]  

  • 9. Phenylenediamine restoration of photosynthetic electron flux in DBMIB-inhibited chloroplasts.
    Selman BR
    J Bioenerg Biomembr; 1976 Jun; 8(3):143-56. PubMed ID: 972141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates and properties of endogenous cyclic photophosphorylation of isolated intact chloroplasts measured by CO2 fixation in the presence of dihydroxyacetone phosphate.
    Kaiser W; Urbach W
    Biochim Biophys Acta; 1976 Jan; 423(1):91-102. PubMed ID: 1247606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the sesquiterpene lactone tetraesters thapsigargicin and thapsigargin, from roots of Thapsia garganica L., on isolated spinach chloroplasts.
    Santarius KA; Falsone G; Haddad H
    Toxicon; 1987; 25(4):389-99. PubMed ID: 3617076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreduction of C-550 and oxidation of cytochrome b559 in chloroplasts. Dependence on the state of photosystem II.
    Vermeglio A; Mathis P
    Biochim Biophys Acta; 1973 Jul; 314(1):57-65. PubMed ID: 4741594
    [No Abstract]   [Full Text] [Related]  

  • 13. Ion movements in isolated chloroplasts. 3. Ionophore-induced ion uptake and its effect on photophosphorylation.
    Degani H; Shavit N
    Arch Biochem Biophys; 1972 Sep; 152(1):339-46. PubMed ID: 5072705
    [No Abstract]   [Full Text] [Related]  

  • 14. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Inhibition of electron transport and photophosphorylation in chloroplasts by quercetin].
    Muzafarov EN; Akulova EA; Ivanov BN; Ruzieva RKh
    Mol Biol (Mosk); 1978; 12(1):100-7. PubMed ID: 24802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling of photophosphorylation in spinach chloroplasts by the ionophorous antibiotic A23187.
    Andreo CS; Vallejos RH
    FEBS Lett; 1974 Sep; 46(1):343-6. PubMed ID: 4214490
    [No Abstract]   [Full Text] [Related]  

  • 17. [Kinetics of electron transport, proton transfer and photophosphorylation in chloroplasts and their relation to temperature-induced structural changes in the thylakoid membrane].
    Tikhonov AN; Timoshin AA; Bliumenfel'd LA
    Mol Biol (Mosk); 1983; 17(6):1236-48. PubMed ID: 6318072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Electron transport and photophosphorylation, coupled with photoreduction of oxygen by chloroplasts of peas, grown under different conditions of illumination].
    Shmeleva VL; Ivanov BN; Red'ko TP
    Biokhimiia; 1982 Jul; 47(7):1104-7. PubMed ID: 7115816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic control and photophosphorylation in photosystem II of isolated spinach chloroplasts.
    Heathcote P; Hall DO
    Biochem Biophys Res Commun; 1974 Feb; 56(3):767-74. PubMed ID: 4826877
    [No Abstract]   [Full Text] [Related]  

  • 20. [Structural and functional characteristics of the photosynthetic apparatus of the mutants Arabidopsis thaliana (L.) Heynh].
    Iakubova MM; Nazarova ZA; Krendeleva TE
    Biokhimiia; 1980 May; 45(5):864-72. PubMed ID: 7378506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.