These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 4770733)
21. Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemolithoautotrophic bacterium Thiobacillus denitrificans. Beller HR Appl Environ Microbiol; 2005 Apr; 71(4):2170-4. PubMed ID: 15812053 [TBL] [Abstract][Full Text] [Related]
22. Oxidation of sulfur compounds and coupled phosphorylation in the chemoautotroph Thiobacillus neapolitanus. Saxena J; Aleem MI Can J Biochem; 1973 May; 51(5):560-8. PubMed ID: 4706835 [No Abstract] [Full Text] [Related]
23. Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Silver M; Torma AE Can J Microbiol; 1974 Feb; 20(2):141-7. PubMed ID: 4822784 [No Abstract] [Full Text] [Related]
24. [Oxidation of inorganic compound by autotrophic bacteria (author's transl)]. Yamanaka T Seikagaku; 1976; 48(5):262-78. PubMed ID: 184217 [No Abstract] [Full Text] [Related]
25. [Dissimilatory nitrate reduction in fungi under conditions of hypoxia and anoxia: a review]. Morozkina EV; Kurakov AV Prikl Biokhim Mikrobiol; 2007; 43(5):607-13. PubMed ID: 18038681 [TBL] [Abstract][Full Text] [Related]
26. Assay of bacterial copper leaching from covellin at alkaline initial pH. Lejczak A; Ostrowski M; Kunicki-Goldfinger W Acta Microbiol Pol; 1980; 29(1):69-73. PubMed ID: 6155056 [TBL] [Abstract][Full Text] [Related]
27. Change of rH2 depending on iron oxidation by Thiobacillus ferrooxidans and on mineral acid concentration. Bracilović D; Barbic F; Zivković J Z Allg Mikrobiol; 1977; 17(3):253-4. PubMed ID: 17952 [No Abstract] [Full Text] [Related]
28. Role of Thiobacillus ferrooxidans in the oxidation of sulfide minerals. Duncan DW; Landesman J; Walden CC Can J Microbiol; 1967 Apr; 13(4):397-403. PubMed ID: 6034412 [No Abstract] [Full Text] [Related]
29. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions. Hosono T; Alvarez K; Lin IT; Shimada J J Contam Hydrol; 2015 Dec; 183():72-81. PubMed ID: 26529303 [TBL] [Abstract][Full Text] [Related]
30. Studies on adenosine-5'-phosphosulphate reductase from Thiobacillus denitrificans. Bowen TJ; Happold FC; Taylor BF Biochim Biophys Acta; 1966 Jun; 118(3):566-76. PubMed ID: 5970862 [No Abstract] [Full Text] [Related]
31. Sulfur metabolism in Thiobacillus denitrificans evidence for the presence of a sulfite reducatase activity. Schedel M; Legall J; Baldensperger J Arch Microbiol; 1975 Nov; 105(3):339-41. PubMed ID: 1190961 [TBL] [Abstract][Full Text] [Related]
32. Reduction of adenosine 5'-phosphosulfate to cysteine in extracts from Chlorella and mutants blocked for sulfate reduction. Schmidt A; Abrams WR; Schiff JA Eur J Biochem; 1974 Sep; 47(3):423-34. PubMed ID: 4154842 [No Abstract] [Full Text] [Related]
33. The influence of oxygen and nitrate on the formation of the cytochrome pigments of the aerobic and anaerobic respiratory chain of Micrococcus denitrificans. Sapshead LM; Wimpenny JW Biochim Biophys Acta; 1972 May; 267(2):388-97. PubMed ID: 5042842 [No Abstract] [Full Text] [Related]
34. [Formation of nitrites from nitrates in the digestive tract]. Fritsch P; de Saint-Blanquat G Ann Nutr Aliment; 1976; 30(5-6):793-804. PubMed ID: 1030223 [TBL] [Abstract][Full Text] [Related]
35. Effects of sulfide on the integration of denitrification with anaerobic digestion. Yin Z; Xie L; Zhou Q J Biosci Bioeng; 2015 Oct; 120(4):426-31. PubMed ID: 25801462 [TBL] [Abstract][Full Text] [Related]
36. [Characteristic of autotrophic denitrification in bioaugmented anaerobic system]. Xu JL; Hou SC; Huang TL Huan Jing Ke Xue; 2010 May; 31(5):1246-51. PubMed ID: 20623859 [TBL] [Abstract][Full Text] [Related]
37. [Phosphorylation coupled to nitrite and nitrate reductase in Micrococcus denitrificans]. Sabater F Rev Esp Fisiol; 1966 Mar; 22(1):1-5. PubMed ID: 5945304 [No Abstract] [Full Text] [Related]
38. Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals. Haaijer SC; Van der Welle ME; Schmid MC; Lamers LP; Jetten MS; Op den Camp HJ FEMS Microbiol Ecol; 2006 Dec; 58(3):439-48. PubMed ID: 17117988 [TBL] [Abstract][Full Text] [Related]
39. Effect of mineral acids on iron bacteria. Barbić FF; Bracilović DM Z Allg Mikrobiol; 1975; 15(5):307-13. PubMed ID: 242124 [TBL] [Abstract][Full Text] [Related]
40. [The role of thionic bacteria in oxidation of sulphide ores of the Kafanskoe bed]. Karavaĭko GI Mikrobiologiia; 1966; 35(6):1004-11. PubMed ID: 6003003 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]