These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 4770733)

  • 41. Aerobic and anaerobic bacterial respiration monitored by electrodes.
    John P
    J Gen Microbiol; 1977 Jan; 98(1):231-8. PubMed ID: 319200
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The participation of cytochromes in the process of nitrate respiration in klesbsiella (Aerobacter) aerogenes.
    Riet J van't
    Biochim Biophys Acta; 1973 Jan; 292(1):237-45. PubMed ID: 4145134
    [No Abstract]   [Full Text] [Related]  

  • 43. Investigations into the kinetics and stoichiometry of bacterial oxidation of covellite (CuS) using a polarographic oxygen probe.
    Rickard PA; Vanselow DG
    Can J Microbiol; 1978 Aug; 24(8):998-1003. PubMed ID: 688107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus).
    Polcyn W; Luciński R
    FEMS Microbiol Lett; 2003 Sep; 226(2):331-7. PubMed ID: 14553930
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorylation coupled to the oxidation of sulfite and 2-mercaptoethanol in extracts of Thiobacillus thioparus.
    Davis EA; Johnson EJ
    Can J Microbiol; 1967 Jul; 13(7):873-84. PubMed ID: 6036893
    [No Abstract]   [Full Text] [Related]  

  • 46. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Nitrates and nitrites in plants].
    Lefebvre JM
    Ann Nutr Aliment; 1976; 30(5-6):661-5. PubMed ID: 20019
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of the NADH oxidase electron transport systems of two obligately chemolithotrophic bacteria.
    Sadler MH; Johnson EJ
    Biochim Biophys Acta; 1972; 283(1):167-79. PubMed ID: 4404938
    [No Abstract]   [Full Text] [Related]  

  • 49. [Oxidation of sulfide minerals by Thiobacillus thiooxidans].
    Karavaĭko GI; Moshniakova SA
    Mikrobiologiia; 1974; 43(1):156-8. PubMed ID: 4601474
    [No Abstract]   [Full Text] [Related]  

  • 50. Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus.
    Neubauer H; Götz F
    J Bacteriol; 1996 Apr; 178(7):2005-9. PubMed ID: 8606176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria.
    Kanaparthi D; Conrad R
    Syst Appl Microbiol; 2015 May; 38(3):184-8. PubMed ID: 25864167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. II. Properties of adenosine-5'-phosphosulfate reductase.
    Lyric RM; Suzuki I
    Can J Biochem; 1970 Mar; 48(3):344-54. PubMed ID: 5438322
    [No Abstract]   [Full Text] [Related]  

  • 53. Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir.
    Rempel CL; Evitts RW; Nemati M
    J Ind Microbiol Biotechnol; 2006 Oct; 33(10):878-86. PubMed ID: 16758172
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfide oxidation by spheroplasts of Thiobacillus ferrooxidans.
    Tano T; Lundgren D
    Appl Environ Microbiol; 1978 Jun; 35(6):1198-205. PubMed ID: 28080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiology and behaviour of marine Thioploca.
    Høgslund S; Revsbech NP; Kuenen JG; Jørgensen BB; Gallardo VA; van de Vossenberg J; Nielsen JL; Holmkvist L; Arning ET; Nielsen LP
    ISME J; 2009 Jun; 3(6):647-57. PubMed ID: 19262616
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the purification of nitrite reductase from Thiobacillus denitrificans and its reaction with nitrite under reducing conditions.
    LeGall J; Payne WJ; Morgan TV; DerVartanian D
    Biochem Biophys Res Commun; 1979 Mar; 87(2):355-62. PubMed ID: 220969
    [No Abstract]   [Full Text] [Related]  

  • 57. ISOLATION AND PROPERTIES OF AN IRON-OXIDIZING THIOBACILLUS.
    RAZZELL WE; TRUSELL PC
    J Bacteriol; 1963 Mar; 85(3):595-603. PubMed ID: 14042937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Implications of Limited Thermophilicity of Nitrite Reduction for Control of Sulfide Production in Oil Reservoirs.
    Fida TT; Chen C; Okpala G; Voordouw G
    Appl Environ Microbiol; 2016 Jul; 82(14):4190-4199. PubMed ID: 27208132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct sulfide oxidation in the solubilization of sulfide ores by Thiobacillus ferrooxidans.
    Beck JV; Brown DG
    J Bacteriol; 1968 Oct; 96(4):1433-4. PubMed ID: 5686009
    [No Abstract]   [Full Text] [Related]  

  • 60. [Study of microbiological oxidative processes in the Degtiar copper-pyrite deposits].
    Karavaĭko GI; Golomzik AI; Filipenko VS
    Izv Akad Nauk SSSR Biol; 1967; 3():386-95. PubMed ID: 6063203
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.