These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 4770791)

  • 1. Transport of hexoses in Streptomyces violaceoruber.
    Sabater B; Asensio C
    Eur J Biochem; 1973 Nov; 39(1):201-5. PubMed ID: 4770791
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae.
    Serrano R; Delafuente G
    Mol Cell Biochem; 1974 Dec; 5(3):161-71. PubMed ID: 4614087
    [No Abstract]   [Full Text] [Related]  

  • 3. Carbohydrate transport in Trypanosoma gambiense.
    Southworth GG; Read CP
    J Protozool; 1969 Nov; 16(4):720-3. PubMed ID: 5362387
    [No Abstract]   [Full Text] [Related]  

  • 4. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae.
    Nevado J; Navarro MA; Heredia CF
    Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tentative mechanism for the anaerobic transport of glucose, fructose and mannose in yeast.
    SCHARFF TG; KREMER EH
    Arch Biochem Biophys; 1962 Apr; 97():192-8. PubMed ID: 14498055
    [No Abstract]   [Full Text] [Related]  

  • 6. The influence of nickelous ions on carbohydrate transport in yeast cells.
    van Steveninck J
    Biochim Biophys Acta; 1966 Sep; 126(1):154-62. PubMed ID: 5970535
    [No Abstract]   [Full Text] [Related]  

  • 7. Uptake of monosaccharides by guinea-pig cerebral-cortex slices.
    Joanny P; Corriol J; Hillman H
    Biochem J; 1969 Apr; 112(3):367-71. PubMed ID: 5801307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate transport in Moniliformis dubius (Acanthocephala). III. Post-absorptive fate of fructose, mannose, and galactose.
    Starling JA; Fisher FM
    J Parasitol; 1979 Feb; 65(1):8-13. PubMed ID: 448603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae.
    Heredia CF
    Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal sugar transport: ionic activation and chemical specificity.
    Bihler I
    Biochim Biophys Acta; 1969 Jun; 183(1):169-81. PubMed ID: 5792864
    [No Abstract]   [Full Text] [Related]  

  • 11. Pancreatic fate of 14C-labelled hexoses.
    Malaisse WJ; Ladriere L; Kadiata MM; Malaisse-Lagae F
    Cell Biochem Funct; 2000 Dec; 18(4):281-91. PubMed ID: 11180291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the hexose transport systems of Aspergillus nidulans.
    Mark CG; Romano AH
    Biochim Biophys Acta; 1971 Oct; 249(1):216-26. PubMed ID: 4946621
    [No Abstract]   [Full Text] [Related]  

  • 13. Strain variations in the utilization of hexoses by Ehrlich ascites tumor cells.
    Letnansky K
    Biochim Biophys Acta; 1968 Oct; 165(3):364-73. PubMed ID: 5737930
    [No Abstract]   [Full Text] [Related]  

  • 14. Arsenate uptake and release in relation to the inhibition of transport and glycolysis in yeast.
    Jung C; Rothstein A
    Biochem Pharmacol; 1965 Jul; 14(7):1093-112. PubMed ID: 5854739
    [No Abstract]   [Full Text] [Related]  

  • 15. Human erythrocyte sugar transport. Kinetic evidence for an asymmetric carrier.
    Bloch R
    J Biol Chem; 1974 Jun; 249(11):3543-50. PubMed ID: 4831229
    [No Abstract]   [Full Text] [Related]  

  • 16. Specificity of carbohydrate transport in Trypanosoma equiperdum.
    Ruff MD; Read CP
    Parasitology; 1974 Apr; 68(2):103-15. PubMed ID: 4826711
    [No Abstract]   [Full Text] [Related]  

  • 17. PtsX: a gene involved in the uptake of glucose and fructose by Escherichia coli.
    Kornberg HL; Jones-Mortimer MC
    FEBS Lett; 1975 Mar; 51(1):1-4. PubMed ID: 1091503
    [No Abstract]   [Full Text] [Related]  

  • 18. Transport of hexoses across the liver-cell membrane.
    Baur H; Heldt HW
    Eur J Biochem; 1977 Apr; 74(2):397-403. PubMed ID: 856580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL; Lambourne LT
    Proc Biol Sci; 1992 Oct; 250(1327):51-5. PubMed ID: 1361062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a carrier conformational change associated with sugar transport in erythrocytes.
    Krupka RM
    Biochemistry; 1971 Mar; 10(7):1143-8. PubMed ID: 5553320
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.