These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 4772713)

  • 1. The dependence of the phase response curve for the luminescence rhythm in gonyaulax on the irradiance in constant conditions.
    Christianson R; Sweeney BM
    Int J Chronobiol; 1973; 1(1):95-100. PubMed ID: 4772713
    [No Abstract]   [Full Text] [Related]  

  • 2. Action spectrum for a low intensity, rapid photoinhibition of mechanically stimulable bioluminescence in the marine dinoflagellates Gonyaulax catenella, G. acatenella, and G. tamarensis.
    Esaias WE; Curl HC; Seliger HH
    J Cell Physiol; 1973 Dec; 82(3):363-72. PubMed ID: 4774527
    [No Abstract]   [Full Text] [Related]  

  • 3. Heavy water slows the Gonyaulax clock: a test of the hypothesis that D2O affects circadian oscillations by diminishing the apparent temperature.
    McDaniel M; Sulzman FM; Hastings JW
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4389-91. PubMed ID: 4530989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The photosynthetic rhythm in single cells of Gonyaulax polyedra.
    SWEENEY BM
    Cold Spring Harb Symp Quant Biol; 1960; 25():145-8. PubMed ID: 13774257
    [No Abstract]   [Full Text] [Related]  

  • 5. Mn(2+)-activated luminescence of the photoprotein obelin.
    Vysotski ES; Trofimov CP; Bondaŕ VS; Frank LA; Markova SV; Illarionov BA
    Arch Biochem Biophys; 1995 Jan; 316(1):92-9. PubMed ID: 7840683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute values of photon emission from the marine dinoflagellates Pyrodinium bahamense, Gonyaulax polyedra and Pyrocystis lunula.
    Seliger HH; Biggley WH; Swift E
    Photochem Photobiol; 1969 Oct; 10(4):227-32. PubMed ID: 5346654
    [No Abstract]   [Full Text] [Related]  

  • 7. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulable and spontaneous bioluminescence in the marine dinoflagellates, Pyrodinium bahamense, Gonyaulax polyedra, and Pyrocystis lunula.
    Biggley WH; Swift E; Buchanan RJ; Seliger HH
    J Gen Physiol; 1969 Jul; 54(1):96-122. PubMed ID: 5792367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light yields from soluble versus insoluble extracts of the bioluminescent marine dinoflagellate, Gonyaulax polyedra.
    Lee J; Winans MD
    Biochem Biophys Res Commun; 1968 Jan; 30(1):105-10. PubMed ID: 5637031
    [No Abstract]   [Full Text] [Related]  

  • 10. Delayed luminescence of biological systems arising from correlated many-soliton states.
    Brizhik L; Scordino A; Triglia A; Musumeci F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031902. PubMed ID: 11580362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic model of photosynthesis in microalgae.
    Rubio FC; Camacho FG; Sevilla JM; Chisti Y; Grima EM
    Biotechnol Bioeng; 2003 Feb; 81(4):459-73. PubMed ID: 12491531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of acceptor side components of PSII in the regulatory mechanism of Plectonema boryanum grown photoautotrophically under diazotrophic condition.
    Misra HS; Desai TS
    Biochem Biophys Res Commun; 1993 Aug; 194(3):1001-7. PubMed ID: 8352756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. White-light emission from an assembly comprising luminescent iridium and europium complexes.
    Coppo P; Duati M; Kozhevnikov VN; Hofstraat JW; De Cola L
    Angew Chem Int Ed Engl; 2005 Mar; 44(12):1806-10. PubMed ID: 15597389
    [No Abstract]   [Full Text] [Related]  

  • 14. Circadian regulation of bioluminescence in the prey-luring glowworm, Arachnocampa flava.
    Merritt DJ; Aotani S
    J Biol Rhythms; 2008 Aug; 23(4):319-29. PubMed ID: 18663239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal rhythms in photoreceptors and dopamine synthetic rate: and the effect of a monoamineoxidase inhibitor.
    Remé CE; Wirz-Justice A; Da Prada M
    Trans Ophthalmol Soc U K (1962); 1983; 103 ( Pt 4)():405-10. PubMed ID: 6589857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescence: mechanism and mode of control of scintillon activity.
    Fogel M; Hastings JW
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):690-3. PubMed ID: 4501583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photic sensitivity ranges of hamster pupillary and circadian phase responses do not overlap.
    Hut RA; Oklejewicz M; Rieux C; Cooper HM
    J Biol Rhythms; 2008 Feb; 23(1):37-48. PubMed ID: 18258756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of photodynamically generated singlet oxygen luminescence in vivo.
    Niedre MJ; Patterson MS; Giles A; Wilson BC
    Photochem Photobiol; 2005; 81(4):941-3. PubMed ID: 15865471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for photic inhibition of flashing in fireflies.
    Brunelli M; Buonamici M; Magni F
    Arch Ital Biol; 1968 May; 106(2):85-99. PubMed ID: 5681892
    [No Abstract]   [Full Text] [Related]  

  • 20. The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response?
    Tyree MT; Nardini A; Salleo S; Sack L; El Omari B
    J Exp Bot; 2005 Feb; 56(412):737-44. PubMed ID: 15582928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.