These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4773578)

  • 1. Plasmodium gallinaceum: effects of various compounds on immunity of susceptible Aedes aegypti and refractory Culex pipiens pipiens.
    Noblet R; Weathersby AB
    Exp Parasitol; 1973 Dec; 34(3):417-25. PubMed ID: 4773578
    [No Abstract]   [Full Text] [Related]  

  • 2. Culex pipiens and Aedes aegypti: whole body extracts and development of Plasmodium gallinaceum in Aedes aegypti.
    Weathersby AB; McCall JW; Ah HS; Nelms MW
    Exp Parasitol; 1971 Feb; 29(1):42-6. PubMed ID: 5545024
    [No Abstract]   [Full Text] [Related]  

  • 3. The development of Plasmodium gallinaceum Brumpt in the hemocoels of refractory Culex pipiens pipiens Linn. and susceptible Aedes aegypti (Linn.).
    Weathersby AB; McCall JW
    J Parasitol; 1968 Oct; 54(5):1017-22. PubMed ID: 4919048
    [No Abstract]   [Full Text] [Related]  

  • 4. Plasmodium gallinaceum: sporozoite activity in immune mosquito hemolymph.
    Weathersby AB
    Exp Parasitol; 1985 Apr; 59(2):192-6. PubMed ID: 3972059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of parabiotic twinning of susceptible and refractory mosquitoes on the development of Plasmodium gallinaceum.
    Weathersby AB; McCroddan DM
    J Parasitol; 1982 Dec; 68(6):1081-4. PubMed ID: 6129293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmodium gallinaceum: development in Aedes aegypti maintained on various carbohydrate diets.
    Weathersby AB; Noblet R
    Exp Parasitol; 1973 Dec; 34(3):426-31. PubMed ID: 4773579
    [No Abstract]   [Full Text] [Related]  

  • 7. Repellent and insecticidal efficacy of a new combination of fipronil and permethrin against three mosquito species (Aedes albopictus, Aedes aegypti and Culex pipiens) on dogs.
    Fankhauser B; Dumont P; Hunter JS; McCall JW; Kaufmann C; Mathis A; Young DR; Carroll SP; McCall S; Chester ST; Soll MD
    Parasit Vectors; 2015 Jan; 8():64. PubMed ID: 25633963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationships of phosphorus amides in Aedes aegypti and Culex pipiens fatigans (Diptera: Culicidae).
    Pillai MK; Bhasin VK; Terry PH; Borkovec AB
    J Med Entomol; 1975 Dec; 12(5):497-502. PubMed ID: 1223296
    [No Abstract]   [Full Text] [Related]  

  • 9. Susceptibility of Ochlerotatus trivittatus (Coq.), Aedes albopictus (Skuse), and Culex pipiens (L.) to West Nile virus infection.
    Tiawsirisup S; Platt KB; Evans RB; Rowley WA
    Vector Borne Zoonotic Dis; 2004; 4(3):190-7. PubMed ID: 15631062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinterpretation of the genetics of susceptibility of Aedes aegypti to Plasmodium gallinaceum.
    Thathy V; Severson DW; Christensen BM
    J Parasitol; 1994 Oct; 80(5):705-12. PubMed ID: 7931905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance potentialities of Aedes aegypti and Culex pipiens fatigans to organophosphorus and other insecticides.
    Ziv M; Brown NJ; Brown AW
    Bull World Health Organ; 1969; 41(6):941-6. PubMed ID: 5309539
    [No Abstract]   [Full Text] [Related]  

  • 12. [Attractant properties of peptides for oviparous female Aedes aegypti and Culex pipiens molestus mosquitoes].
    Krasnobrizhiĭ NIa; Kovalenko LG; Skrynik EM
    Med Parazitol (Mosk); 1980; 49(6):65-8. PubMed ID: 7207386
    [No Abstract]   [Full Text] [Related]  

  • 13. The fate of ingested Brugia pahangi microfilariae in susceptible and refractory strains of Culex pipiens and Aedes aegypti.
    Obiamiwe BA
    Ann Trop Med Parasitol; 1977 Sep; 71(3):375-7. PubMed ID: 921369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes.
    Suman DS; Wang Y; Bilgrami AL; Gaugler R
    Acta Trop; 2013 Oct; 128(1):103-9. PubMed ID: 23860181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure of Aedes aegypti and Culex pipiens to transmit Plasmodium vaughani.
    MANWELL RD
    J Parasitol; 1947 Apr; 33(2):167-9. PubMed ID: 20294091
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of artesunate treatment on Plasmodium gallinaceum transmission in the vectors Aedes aegypti and Culex quinquefasciatus.
    Pruck-Ngern M; Pattaradilokrat S; Chumpolbanchorn K; Pimnon S; Narkpinit S; Harnyuttanakorn P; Buddhirakkul P; Saiwichai T
    Vet Parasitol; 2015 Jan; 207(1-2):161-5. PubMed ID: 25466617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insecticidal activity of isobutylamides derived from Piper nigrum against adult of two mosquito species, Culex pipiens pallens and Aedes aegypti.
    Park IK
    Nat Prod Res; 2012; 26(22):2129-31. PubMed ID: 22010905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory evaluation of lactic acid on attraction of Culex spp. (Diptera: Culicidae).
    Allan SA; Bernier UR; Kline DL
    J Vector Ecol; 2010 Dec; 35(2):318-24. PubMed ID: 21175938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Plasmodium gallinaceum on hemolymph physiology of Aedes aegypti during parasite development.
    Araujo RV; Maciel C; Hartfelder K; Capurro ML
    J Insect Physiol; 2011 Feb; 57(2):265-73. PubMed ID: 21112329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmodium gallinaceum: ookinete formation and proteolytic enzyme dynamics in highly refractory Aedes aegypti populations.
    Kaplan RA; Zwiers SH; Yan G
    Exp Parasitol; 2001 Jul; 98(3):115-22. PubMed ID: 11527434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.