These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 4773858)
1. Inhibition of glucose transport in the human erythrocyte by cytochalasin B. Bloch R Biochemistry; 1973 Nov; 12(23):4799-801. PubMed ID: 4773858 [No Abstract] [Full Text] [Related]
2. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding. Taverna RD; Langdon RG Biochim Biophys Acta; 1973 Oct; 323(2):207-19. PubMed ID: 4752283 [No Abstract] [Full Text] [Related]
3. Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts. Jung CY; Rampal AL J Biol Chem; 1977 Aug; 252(15):5456-63. PubMed ID: 885863 [No Abstract] [Full Text] [Related]
4. Inhibition of sugar transport in erythrocytes by fluorodinitrobenzene. Krupka RM Biochemistry; 1971 Mar; 10(7):1148-53. PubMed ID: 5553321 [No Abstract] [Full Text] [Related]
5. Glucose transport carrier of human erythrocytes. Radiation-target size of glucose-sensitive cytochalasin B binding protein. Jung CY; Hsu TL; Hah JS; Cha C; Haas MN J Biol Chem; 1980 Jan; 255(2):361-4. PubMed ID: 7356617 [TBL] [Abstract][Full Text] [Related]
6. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. Albert SG Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046 [TBL] [Abstract][Full Text] [Related]
7. Testing transport systems for competition between pairs of reversible inhibitors. Inhibition of erythrocyte glucose transport by cytochalasin B and steroids. Devés R; Krupka RM J Biol Chem; 1980 Dec; 255(24):11870-4. PubMed ID: 7440574 [TBL] [Abstract][Full Text] [Related]
8. Irreversible inhibitors of glucose transfer in human erythrocytes. Widdas WF Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(2):94-100. PubMed ID: 4157998 [No Abstract] [Full Text] [Related]
9. Interaction of sugar acetals with the human erythrocyte glucose transport system. Novak RA; LeFevre PG J Membr Biol; 1974 Jul; 17(3):383-90. PubMed ID: 4847765 [No Abstract] [Full Text] [Related]
10. Human erythrocyte sugar transport. Identification of the essential residues of the sugar carrier by specific modification. Bloch R J Biol Chem; 1974 Mar; 249(6):1814-22. PubMed ID: 4817966 [No Abstract] [Full Text] [Related]
11. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier. Devés R; Krupka RM Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049 [TBL] [Abstract][Full Text] [Related]
12. The monosaccharide transport system of the human erythrocyte. Solubilization and characterization on the basis of cytochalasin B binding. Zoccoli MA; Baldwin SA; Lienhard GE J Biol Chem; 1978 Oct; 253(19):6923-30. PubMed ID: 690133 [No Abstract] [Full Text] [Related]
13. Cytochalasin B-binding proteins in rabbit erythrocyte membranes and their post-natal change in relation to the glucose carrier activity. Jung CY; Pinkofsky HB; Cowden MW Biochim Biophys Acta; 1980 Mar; 597(1):145-54. PubMed ID: 7370240 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of carrier-mediated and non-mediated permeation processes by cytochalasin B. Plagemann PG; Wohlhueter RM; Graff JC; Marz R Front Biol; 1978; 46():445-73. PubMed ID: 208876 [No Abstract] [Full Text] [Related]
15. A study of the dependence of the human erythrocyte glucose transport system on membrane sulfhydryl groups. Smith RP; Ellman GL J Membr Biol; 1973; 12(2):177-88. PubMed ID: 4205085 [No Abstract] [Full Text] [Related]
16. Preferential uptake of D-glucose by isolated human erythrocyte membranes. Kahlenberg A; Urman B; Dolansky D Biochemistry; 1971 Aug; 10(16):3154-62. PubMed ID: 5126931 [No Abstract] [Full Text] [Related]
17. Reaction of the glucose carrier in erythrocytes with halodinitrobenzenes. Krupka RM; Devés R J Biol Chem; 1980 Mar; 255(5):2051-5. PubMed ID: 7354076 [No Abstract] [Full Text] [Related]
18. Photoaffinity labeling of the human erythrocyte D-glucose transporter. Carter-Su C; Pessin JE; Mora R; Gitomer W; Czech MP J Biol Chem; 1982 May; 257(10):5419-25. PubMed ID: 7200092 [No Abstract] [Full Text] [Related]
19. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins. Goldin SM; Rhoden V J Biol Chem; 1978 Apr; 253(8):2575-83. PubMed ID: 632287 [No Abstract] [Full Text] [Related]
20. Evidence for a carrier conformational change associated with sugar transport in erythrocytes. Krupka RM Biochemistry; 1971 Mar; 10(7):1143-8. PubMed ID: 5553320 [No Abstract] [Full Text] [Related] [Next] [New Search]