These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 4774128)

  • 1. Studies with isolated surviving rat hearts. Interdependence of free amino acids and citric-acid-cycle intermediates.
    Davis EJ; Bremer J
    Eur J Biochem; 1973 Sep; 38(1):86-97. PubMed ID: 4774128
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of epinephrine, glucagon, and the nutritional state on the oxidation of branched chain amino acids and pyruvate by isolated hearts and diaphragms of the rat.
    Buse MG; Biggers JF; Drier C; Buse JF
    J Biol Chem; 1973 Jan; 248(2):697-706. PubMed ID: 4684697
    [No Abstract]   [Full Text] [Related]  

  • 3. Oxidation of branched chain amino acids by isolated hearts and diaphragms of the rat. The effect of fatty acids, glucose, and pyruvate respiration.
    Buse MG; Biggers JF; Friderici KH; Buse JF
    J Biol Chem; 1972 Dec; 247(24):8085-96. PubMed ID: 4640937
    [No Abstract]   [Full Text] [Related]  

  • 4. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.
    Russell RR; Taegtmeyer H
    J Clin Invest; 1991 Feb; 87(2):384-90. PubMed ID: 1671390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propionyl-L-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetate.
    Russell RR; Mommessin JI; Taegtmeyer H
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H441-7. PubMed ID: 7840294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of metabolism in the isolated, perfused rat heart using 13C NMR.
    Bailey IA; Gadian DG; Matthews PM; Radda GK; Seeley PJ
    FEBS Lett; 1981 Jan; 123(2):315-8. PubMed ID: 7227522
    [No Abstract]   [Full Text] [Related]  

  • 7. Replenishment and depletion of citric acid cycle intermediates in skeletal muscle. Indication of pyruvate carboxylation.
    Spydevold S; Davis EJ; Bremer J
    Eur J Biochem; 1976 Dec; 71(1):155-65. PubMed ID: 1009946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo.
    McAllister A; Allison SP; Randle PJ
    Biochem J; 1973 Aug; 134(4):1067-81. PubMed ID: 4762752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation of propionylcarnitine in isolated rat liver mitochondria.
    Bohmer T
    Biochim Biophys Acta; 1968 Dec; 164(3):487-97. PubMed ID: 5701694
    [No Abstract]   [Full Text] [Related]  

  • 10. Respiratory acidosis and its reversibility in perfused rat heart: regulation of citric acid cycle activity.
    Schaffer SW; Safer B; Ford C; Illingworth J; Williamson JR
    Am J Physiol; 1978 Jan; 234(1):H40-51. PubMed ID: 23681
    [No Abstract]   [Full Text] [Related]  

  • 11. The effects of pyruvare and related compounds on the induced formation of tryptophanase in Escherichia coli.
    Raunio R
    Acta Chem Scand; 1966; 20(1):17-23. PubMed ID: 5327365
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolic effects of pent-4-enoate in isolated perfused rat heart.
    Hiltunen JK
    Biochem J; 1978 Feb; 170(2):241-7. PubMed ID: 637839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of amino acid catabolism in the formation of the tricarboxylic acid cycle intermediates and ammonia in anoxic rat heart.
    Pisarenko OI; Solomatina ES; Studneva IM
    Biochim Biophys Acta; 1986 Feb; 885(2):154-61. PubMed ID: 2868758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of ketone bodies by adipose tissue and its regulation by carbohydrate metabolism.
    Söling HD; Zahlten R; Reimold WV; Willms B
    Horm Metab Res; 1970 Mar; 2(2):56-63. PubMed ID: 5520909
    [No Abstract]   [Full Text] [Related]  

  • 15. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism.
    Collins-Nakai RL; Noseworthy D; Lopaschuk GD
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1862-71. PubMed ID: 7977816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Formation of the intermediate products of the tricarboxylic acid cycle and ammonia from free amino acids in anoxic heart muscle].
    Pisarenko OI; Solomatina ES; Studneva IM
    Biokhimiia; 1986 Aug; 51(8):1276-85. PubMed ID: 3768433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of some metabolites and amino acids on the glucose uptake by the isolated normal rat diaphragm in vitro.
    Brahmachari HD; Sarma GR
    Indian J Biochem; 1964 Sep; 1(3):168-9. PubMed ID: 4243471
    [No Abstract]   [Full Text] [Related]  

  • 18. Glucose transport in perfused rat hearts: lack of epinephrine stimulation during arrest.
    Challoner DR
    Life Sci I; 1970 Apr; 9(8):477-80. PubMed ID: 5504265
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of acetoacetyl-CoA in isolated perfused rat hearts.
    Menahan LA; Hron WT
    Eur J Biochem; 1981 Oct; 119(2):295-9. PubMed ID: 7308186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of glutamate and aspartate on myocardial substrate oxidation during potassium arrest.
    Reed MK; Barak C; Malloy CR; Maniscalco SP; Jessen ME
    J Thorac Cardiovasc Surg; 1996 Dec; 112(6):1651-60. PubMed ID: 8975857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.