These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 4775171)

  • 1. [Energy metabolism in the brain of invertebrates].
    Wegener G; Zebe E
    Naturwissenschaften; 1973 Dec; 60(12):551-2. PubMed ID: 4775171
    [No Abstract]   [Full Text] [Related]  

  • 2. Distribution of cellulases and chitinases in marine invertebrates.
    Elyakova LA
    Comp Biochem Physiol B; 1972 Sep; 43(1):67-70. PubMed ID: 4405774
    [No Abstract]   [Full Text] [Related]  

  • 3. The distribution of -N-acetylglucosaminidase in marine invertebrates.
    Molodtsov NV; Vafina MG
    Comp Biochem Physiol B; 1972 Jan; 41(1):113-20. PubMed ID: 4403887
    [No Abstract]   [Full Text] [Related]  

  • 4. Carbohydrases with unusual specificities. 3. A hydrolase splitting p-nitrophenyl 2-deoxy-2-benzamido-beta-D-glucopyranoside--distribution in marine invertebrates and certain mushrooms.
    Molodtsov NV; Vafina MG
    Comp Biochem Physiol B; 1974 Jun; 48(2):257-60. PubMed ID: 4151331
    [No Abstract]   [Full Text] [Related]  

  • 5. Marine invertebrate cytochrome P450: emerging insights from vertebrate and insects analogies.
    Rewitz KF; Styrishave B; Løbner-Olsen A; Andersen O
    Comp Biochem Physiol C Toxicol Pharmacol; 2006 Aug; 143(4):363-81. PubMed ID: 16769251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipases of marine invertebrates. I. Distribution of phospholipase A.
    Vaskovsky VE; Suppes ZS
    Comp Biochem Physiol B; 1972 Nov; 43(3):601-9. PubMed ID: 4404922
    [No Abstract]   [Full Text] [Related]  

  • 7. The distribution of arginase and urease in marine invertebrates.
    Hanlon DP
    Comp Biochem Physiol B; 1975 Oct; 52(2):261-4. PubMed ID: 240609
    [No Abstract]   [Full Text] [Related]  

  • 8. Stereospecificity of some invertebrate lactic dehydrogenases.
    Scheid MJ; Awapara J
    Comp Biochem Physiol B; 1972 Nov; 43(3):619-26. PubMed ID: 4404923
    [No Abstract]   [Full Text] [Related]  

  • 9. Glycosidases of marine invertebrates from Posiet Bay, Sea of Japan.
    Molodtsov NV; Vafina MG; Kim A; Sundukova EV; Artyukov AA; Blinov YG
    Comp Biochem Physiol B; 1974 Jul; 48(3):463-70. PubMed ID: 4152617
    [No Abstract]   [Full Text] [Related]  

  • 10. Invertebrate red blood cell carbonic anhydrase.
    Henry RP
    J Exp Zool; 1987 Apr; 242(1):113-6. PubMed ID: 3110365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [ON THE METABOLISM OF D- AND L-SERINE IN MARINE INVERTEBRATES].
    SISINI A
    Boll Soc Ital Biol Sper; 1963 Dec; 39():1969-74. PubMed ID: 14150858
    [No Abstract]   [Full Text] [Related]  

  • 12. [DISTRIBUTION OF THE UBIQUINONES IN MARINE INVERTEBRATES].
    CASERTA G; GHIRETTI F
    Boll Soc Ital Biol Sper; 1963 Dec; 39():2072-4. PubMed ID: 14158948
    [No Abstract]   [Full Text] [Related]  

  • 13. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.
    Zammit VA; Newsholme EA
    Biochem J; 1976 Dec; 160(3):447-62. PubMed ID: 13783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of malate dehydrogenase in adaptation to hypoxia in invertebrates].
    Shapiro AZ; Bobkova AN
    Zh Evol Biokhim Fiziol; 1975; 11(5):546-7. PubMed ID: 1217336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom.
    Kuo JF; Greengard P
    Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1349-55. PubMed ID: 4393915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity and molecular weight inter-relationships of the esterase isoenzymes of several invertebrate species.
    Haites N; Don M; Masters CJ
    Comp Biochem Physiol B; 1972 Jun; 42(2):303-22. PubMed ID: 4403731
    [No Abstract]   [Full Text] [Related]  

  • 17. [Types of acquired reactions in invertebrates (phylogenesis of the memory mechanisms)].
    Voronin LG; Karas' AIa; Tushmalova NA; Khonicheva NM
    Usp Sovrem Biol; 1967; 64(2):312-32. PubMed ID: 4395340
    [No Abstract]   [Full Text] [Related]  

  • 18. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.
    Suzuki T; Furukohri T
    J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some properties and specificity of deoxyribonucleases from marine invertebrates and fishes.
    Rasskazov VA; Pirozhnikova VV; Galkin VV
    Comp Biochem Physiol B; 1975 Jul; 51(3):343-7. PubMed ID: 237732
    [No Abstract]   [Full Text] [Related]  

  • 20. [Precursors of histidine-containing dipeptides in the muscle tissue of invertebrates].
    Lebedev AV; Boldyrev AA
    Biokhimiia; 1972; 37(1):135-41. PubMed ID: 4401595
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.