BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 477670)

  • 1. Methyl acceptors for protein methylase II from human-erythrocyte membrane.
    Galletti P; Ki Paik W; Kim S
    Eur J Biochem; 1979 Jun; 97(1):221-7. PubMed ID: 477670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective methyl esterification of erythrocyte membrane proteins by protein methylase II.
    Galletti P; Paik WK; Kim S
    Biochemistry; 1978 Oct; 17(20):4272-6. PubMed ID: 708712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates.
    O'Connor CM; Aswad DW; Clarke S
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7757-61. PubMed ID: 6595658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased methyl esterification of membrane proteins in aged red-blood cells. Preferential esterification of ankyrin and band-4.1 cytoskeletal proteins.
    Galletti P; Ingrosso D; Nappi A; Gragnaniello V; Iolascon A; Pinto L
    Eur J Biochem; 1983 Sep; 135(1):25-31. PubMed ID: 6224690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylation of erythrocyte membrane proteins at extracellular and intracellular D-aspartyl sites in vitro. Saturation of intracellular sites in vivo.
    O'Connor CM; Clarke S
    J Biol Chem; 1983 Jul; 258(13):8485-92. PubMed ID: 6863297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-adenosylmethionine: protein-carboxyl O-methyltransferase (protein methylase II).
    Kim S
    Methods Enzymol; 1984; 106():295-309. PubMed ID: 6387374
    [No Abstract]   [Full Text] [Related]  

  • 7. In vivo carboxyl methylation of human eruthrocyte membrane proteins.
    Kim S; Galletti P; Paik WK
    J Biol Chem; 1980 Jan; 255(2):338-41. PubMed ID: 7356615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced erythrocyte membrane protein methylation in sickle cell anemia.
    Ro JY; Neilan B; Magee PN; Paik WK; Kim S
    J Biol Chem; 1981 Oct; 256(20):10572-6. PubMed ID: 7287725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of protein methylase II from human erythrocytes.
    Kim S; Choi J; Jun GJ
    J Biochem Biophys Methods; 1983 Aug; 8(1):9-14. PubMed ID: 6630872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of protein methylase II from wheat germ.
    Trivedi L; Gupta A; Ki Paik W; Kim S
    Eur J Biochem; 1982 Nov; 128(2-3):349-54. PubMed ID: 7151783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential membrane protein carboxyl-methylation of intact human erythrocytes by exogenous methyl donors.
    Ro JY; DiMaria P; Kim S
    Biochem J; 1984 May; 219(3):743-9. PubMed ID: 6743244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of erythrocyte protein methyl esters by two-dimensional gel electrophoresis under acidic separating conditions.
    O'Connor CM; Clarke S
    Anal Biochem; 1985 Jul; 148(1):79-86. PubMed ID: 4037310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal membrane protein methylation and merocyanine 540 fluorescence in sickle erythrocyte membranes.
    Manna C; Hermanowicz N; Ro JY; Neilan B; Glushko V; Kim S
    Biochem Med; 1984 Jun; 31(3):362-70. PubMed ID: 6477541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic basis for the calcium-induced decrease of membrane protein methyl esterification in intact erythrocytes. Evidence for an impairment of S-adenosylmethionine synthesis.
    Galletti P; Ingrosso D; Iardino P; Manna C; Pontoni G; Zappia V
    Eur J Biochem; 1986 Feb; 154(3):489-95. PubMed ID: 3081340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of two glycophorins from horse erythrocyte membranes.
    Murayama JI; Takeshita K; Tomita M; Hamada A
    J Biochem; 1981 May; 89(5):1593-8. PubMed ID: 7275955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase.
    Ota IM; Ding L; Clarke S
    J Biol Chem; 1987 Jun; 262(18):8522-31. PubMed ID: 3597386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and topography of substrates for protein carboxyl methyltransferase in synaptic membrane and myelin-enriched fractions of bovine and rat brain.
    Johnson BA; Aswad DW
    J Neurochem; 1985 Oct; 45(4):1119-27. PubMed ID: 4031881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylation of membrane proteins in human erythrocytes. Identification and characterization of polypeptides methylated in lysed cells.
    Terwilliger TC; Clarke S
    J Biol Chem; 1981 Mar; 256(6):3067-76. PubMed ID: 7204391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stoichiometric methylation of calcineurin by protein carboxyl O-methyltransferase and its effects on calmodulin-stimulated phosphatase activity.
    Billingsley ML; Kincaid RL; Lovenberg W
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5612-6. PubMed ID: 2994037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic methylation of 23-29-kDa bovine retinal rod outer segment membrane proteins. Evidence for methyl ester formation at carboxyl-terminal cysteinyl residues.
    Ota IM; Clarke S
    J Biol Chem; 1989 Aug; 264(22):12879-84. PubMed ID: 2753892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.