These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 477829)

  • 1. Catalase and dehydroascorbate reductase in human polymorphonuclear leukocytes (PMN): possible functional relationship.
    Stankova L; Bigley R; Wyss SR; Aebi H
    Experientia; 1979 Jul; 35(7):852-3. PubMed ID: 477829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythrocyte metabolism against oxidation in Japanese acatalasemia.
    Takahara S; Ogata M
    Monogr Hum Genet; 1978; 10():205-11. PubMed ID: 723895
    [No Abstract]   [Full Text] [Related]  

  • 3. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia.
    Rister M; Baehner RL
    J Clin Invest; 1976 Nov; 58(5):1174-84. PubMed ID: 825533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione-dependent dehydroascorbate reduction: a determinant of dehydroascorbate uptake by human polymorphonuclear leukocytes.
    Bigley R; Stankova L; Roos D; Loos J
    Enzyme; 1980; 25(3):200-4. PubMed ID: 7398612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in erythrocytes of rats with experimental neoplastic disease.
    Batko J; Warchoł T; Karoń H
    Acta Biochim Pol; 1996; 43(2):403-5. PubMed ID: 8862187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activities of superoxide dismutase and glutathione peroxidase in the red cells of Japanese acatalasemia blood.
    Ogata M; Mizugaki J; Ueda K; Ikeda M
    Tohoku J Exp Med; 1977 Sep; 123(1):95-8. PubMed ID: 918979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous demonstration of phagocytosis-connected oxygen consumption and corresponding NAD(P)H oxidase activity: direct evidence for NADPH as the predominant electron donor to oxygen in phagocytizing human neutrophils.
    Nakamura M; Baxter CR; Masters BS
    Biochem Biophys Res Commun; 1981 Feb; 98(3):743-51. PubMed ID: 7225119
    [No Abstract]   [Full Text] [Related]  

  • 8. Disorders of respiratory burst termination.
    Whitin JC; Cohen HJ
    Hematol Oncol Clin North Am; 1988 Jun; 2(2):289-99. PubMed ID: 2839461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant enzymes activity in polymorphonuclear leukocytes in chronic renal failure.
    Shurtz-Swirski R; Mashiach E; Kristal B; Shkolnik T; Shasha SM
    Nephron; 1995; 71(2):176-9. PubMed ID: 8569950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Activities of superoxide dismutase, catalase, glutathione peroxidase and reductase in umbilical cord blood of newborns from mothers smoking during pregnancy].
    Chełchowska M; Laskowska-Klita T; Leibschang J
    Przegl Lek; 2006; 63(10):970-3. PubMed ID: 17288196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method.
    Briggs RT; Drath DB; Karnovsky ML; Karnovsky MJ
    J Cell Biol; 1975 Dec; 67(3):566-86. PubMed ID: 407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes of oxygen metabolism during erythrocyte differentiation.
    Russanov EM; Kirkova MD; Setchenska MS; Arnstein HR
    Biosci Rep; 1981 Dec; 1(12):927-31. PubMed ID: 7317576
    [No Abstract]   [Full Text] [Related]  

  • 13. Antioxidant systems in polymorphonuclear leucocytes of Type 2 diabetes mellitus.
    Muchová J; Liptáková A; Országhová Z; Garaiová I; Tison P; Cársky J; Duracková Z
    Diabet Med; 1999 Jan; 16(1):74-8. PubMed ID: 10229297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxidative changes in erythrocytic enzymes in Plasmodium berghei induced malaria in mice.
    Nair CR; Gupta PH; Chauhan DP; Vinayak VK
    Indian J Med Res; 1984 Dec; 80():627-31. PubMed ID: 6398277
    [No Abstract]   [Full Text] [Related]  

  • 15. The respiratory burst of bovine neutrophils. Role of a b type cytochrome and coenzyme specificity.
    Morel F; Doussiere J; Stasia MJ; Vignais PV
    Eur J Biochem; 1985 Nov; 152(3):669-79. PubMed ID: 4054128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. Activators and inhibitors of the granule bound NADPH oxidase.
    Patriarca P; Dri P; Kakinuma K; Rossi F
    Mol Cell Biochem; 1976 Sep; 12(3):137-46. PubMed ID: 979961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutrophil-free radical generation and enzymatic antioxidants in migraine patients.
    Shukla R; Barthwal MK; Srivastava N; Sharma P; Raghavan SA; Nag D; Srimal RC; Seth PK; Dikshit M
    Cephalalgia; 2004 Jan; 24(1):37-43. PubMed ID: 14687011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal--leukocyte interaction.
    Mandell GL
    J Clin Invest; 1975 Mar; 55(3):561-6. PubMed ID: 1117067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier state in human acatalasemia.
    NISHIMURA ET; HAMILTON HB; KOBARA TY; TAKAHARA S; OGURA Y; DOI K
    Science; 1959 Aug; 130(3371):333-4. PubMed ID: 13668563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrite content and antioxidant enzyme levels in the blood of schizophrenia patients.
    Srivastava N; Barthwal MK; Dalal PK; Agarwal AK; Nag D; Srimal RC; Seth PK; Dikshit M
    Psychopharmacology (Berl); 2001 Nov; 158(2):140-5. PubMed ID: 11702087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.