These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4778802)

  • 21. Physico-chemical properties of 2,6-TNS binding sites in squid giant axons: involvement of water molecules in the excitation process.
    Carbone E; Sisco K; Warashina A
    J Membr Biol; 1974; 18(3-4):263-76. PubMed ID: 4421076
    [No Abstract]   [Full Text] [Related]  

  • 22. 1-Anilino-8-naphthalenesulfonate: a fluorescent probe of membrane surface structure, composition and mobility.
    Haynes DH; Staerk H
    J Membr Biol; 1974 Jul; 17(3):313-40. PubMed ID: 4847763
    [No Abstract]   [Full Text] [Related]  

  • 23. Cation binding to brain plasma membranes. An evaluation of the use of anionic fluorescent probes.
    Krishnan KS; Balaram P
    Arch Biochem Biophys; 1976 Jun; 174(2):420-30. PubMed ID: 820264
    [No Abstract]   [Full Text] [Related]  

  • 24. The effect of electrical stimulation on the action of sulfhydryl reagents in the giant axon of squid: suggested mechanisms for the role of thiol and disulfide groups in electrically-induced conformational changes.
    Marquis JK; Mautner HG
    J Membr Biol; 1974; 15(3):249-60. PubMed ID: 4838039
    [No Abstract]   [Full Text] [Related]  

  • 25. 1-Anilino-8-naphthalenesulfonate: a fluorescent indicator of ion binding electrostatic potential on the membrane surface.
    Haynes DH
    J Membr Biol; 1974 Jul; 17(3):341-66. PubMed ID: 4847764
    [No Abstract]   [Full Text] [Related]  

  • 26. Biochemical studies of nerve excitability: the use of protein modifying reagents for characterizing sites involved in nerve excitation.
    Baumgold J; Matsumoto G; Tasaki I
    J Neurochem; 1978 Jan; 30(1):91-100. PubMed ID: 621524
    [No Abstract]   [Full Text] [Related]  

  • 27. Reactions of fluorescent probes with normal and chemically modified myelin.
    Feinstein MB; Felsenfeld H
    Biochemistry; 1975 Jul; 14(14):3041-8. PubMed ID: 238581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A model of the activation process of Na+ conductance in the squid axon: an approach with interactive desorption kinetics of divalent cations.
    Goto H
    J Theor Biol; 1975 Sep; 53(2):309-25. PubMed ID: 1195765
    [No Abstract]   [Full Text] [Related]  

  • 29. Evidence for ionic pores in excitable membranes.
    Armstrong CM
    Biophys J; 1975 Sep; 15(9):932-3. PubMed ID: 1182266
    [No Abstract]   [Full Text] [Related]  

  • 30. Towards a molecular theory of the nerve membrane: prediction of the maximum negative conductance.
    Gillespie CJ
    J Theor Biol; 1973 Dec; 42(3):533-43. PubMed ID: 4766751
    [No Abstract]   [Full Text] [Related]  

  • 31. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance.
    Rudy B
    J Physiol; 1978 Oct; 283():1-21. PubMed ID: 722569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tetracycline fluorescence as calcium-probe for nerve membrane with some model studies using erythrocyte ghosts.
    Hallett M; Schneider AS; Carbone E
    J Membr Biol; 1972; 10(1):31-44. PubMed ID: 4656231
    [No Abstract]   [Full Text] [Related]  

  • 33. Frequency domain analysis of asymmetry current in squid axon membrane.
    Takashima S
    Biophys J; 1978 Apr; 22(1):115-9. PubMed ID: 638220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single channel recordings of K+ currents in squid axons.
    Conti F; Neher E
    Nature; 1980 May; 285(5761):140-3. PubMed ID: 6246440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osmometrically determined characteristics of the cell membrane of squid and lobster giant axons.
    Freeman AR; Reuben JP; Brandt PW; Grundfest H
    J Gen Physiol; 1966 Nov; 50(2):423-45. PubMed ID: 11526838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The normal occurrence of octopamine in neural tissue of the Octopus and other cephalopods.
    Juorio AV; Molinoff PB
    J Neurochem; 1974 Feb; 22(2):271-80. PubMed ID: 4598025
    [No Abstract]   [Full Text] [Related]  

  • 37. Localization of horseradish peroxidase-alpha-bungarotoxin binding in crustacean axonal membrane vesicles and intact axons.
    Chester J; Lentz TL; Marquis JK; Mautner HG
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3542-6. PubMed ID: 291022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation, inactivation, and chemical blockage of the gating current in squid giant axons.
    Meves H
    Ann N Y Acad Sci; 1977 Dec; 303():322-41. PubMed ID: 290300
    [No Abstract]   [Full Text] [Related]  

  • 39. Anaesthesia by the n-alkanes. A comparative study of nerve impulse blockage and the properties of black lipid bilayer membranes.
    Haydon DA; Hendry BM; Levinson SR; Requena J
    Biochim Biophys Acta; 1977 Oct; 470(1):17-34. PubMed ID: 907781
    [No Abstract]   [Full Text] [Related]  

  • 40. Sodium inactivation mechanism modulates QX-314 block of sodium channels in squid axons.
    Yeh JZ
    Biophys J; 1978 Nov; 24(2):569-74. PubMed ID: 728531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.