These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 4780024)

  • 1. [Quantitative description of the process of radiation inactivation of cells. II. Mathematical equation for the dose-survival relation].
    Barsukov VS; Malinovskiĭ OV
    Tsitologiia; 1973 Oct; 15(10):1275-83. PubMed ID: 4780024
    [No Abstract]   [Full Text] [Related]  

  • 2. [Quantitative description of the process of radiation inactivation of cells. 3. Cell recovery from sublethal radiation damage. Fractionated radiation method].
    Barsukov VS; Malinovskiĭ OV
    Tsitologiia; 1973 Nov; 15(11):1405-14. PubMed ID: 4781842
    [No Abstract]   [Full Text] [Related]  

  • 3. [Quantitative description of the process of radiation inactivation of cells. VI. Calculation of the modifications in the dose survival relationship of eukaryotic cells].
    Barsukov VS
    Tsitologiia; 1975 Mar; 17(3):314-20. PubMed ID: 1135951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantitative description of the process of radiational inactivation of cells. I. The basic premises. Formation of lethal lesions].
    Barsukov VS; Malinovskiĭ OV
    Tsitologiia; 1973 Sep; 15(9):1152-9. PubMed ID: 4782143
    [No Abstract]   [Full Text] [Related]  

  • 5. [Quantitative description of the process of radiation inactivation of cells. V. Inactivation of cells under the influence of irradiation with various linear transmitted energies].
    Barsukov VS; Malinovskiĭ OV
    Tsitologiia; 1974 Nov; 16(11):1397-401. PubMed ID: 4439488
    [No Abstract]   [Full Text] [Related]  

  • 6. [A quantitative description of the process of radiation inactivation of cells. IV. Post-radiation recovery of cell viability with delayed multiplication].
    Barsukov VS; Malinovskiĭ OV
    Tsitologiia; 1974 Jan; 16(1):68-73. PubMed ID: 4463471
    [No Abstract]   [Full Text] [Related]  

  • 7. [Postradiation regeneration of diploid yeast cells irradiated with high-energy bremsstrahlung].
    Tsuladze NG; Petin VG; Kovalev VP; Kapchigashev SP
    Radiobiologiia; 1976; 16(1):73-7. PubMed ID: 1273285
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of liquid holding in Schizosaccharomyces pombe strains after gamma and ultraviolet irradiation.
    Shahin MM; Gentner NE; Nasim A
    Radiat Res; 1973 Feb; 53(2):216-25. PubMed ID: 4695223
    [No Abstract]   [Full Text] [Related]  

  • 9. Description of radiation-induced cell death by a stochastic differential equation.
    Kruglikov IL
    Radiat Res; 1991 Jul; 127(1):97-100. PubMed ID: 2068277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Estimation of the probability parameters for a model of radiation inactivation of cells from experimental survival curves].
    Amirtaev KG; Korogodin VI; Lobachevskiĭ PN
    Radiobiologiia; 1985; 25(1):29-32. PubMed ID: 3883399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation cell killing described by the two-component theory and by the alpha beta-equation. A comparison and evaluation.
    Wideröe R
    Strahlenther Onkol; 1986 Jan; 162(1):57-62. PubMed ID: 3945921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stochastic model of the formation of chromosome aberrations and cell radiation inactivation].
    Obaturov GM; Matveeva LA; Tiatte EG; Ias'kova EK
    Radiobiologiia; 1980; 20(6):803-9. PubMed ID: 7208820
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of mathematical models for radiation fractionation.
    Hethcote HW; McLarty JW; Thames HD
    Radiat Res; 1976 Sep; 67(3):387-407. PubMed ID: 959485
    [No Abstract]   [Full Text] [Related]  

  • 14. Multi-compartment model for the interpretation of the radiation injury of MS2 phages.
    Fidy J; Karczag A
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(1-2):115-20. PubMed ID: 4414732
    [No Abstract]   [Full Text] [Related]  

  • 15. [Formation of radioraces in yeast organisms. 4. Relation of saltant yield to conditions of postradiation cultivation].
    Bliznik KM; Kapul'tsevich IuG; Korogodin VI; Petin VG
    Radiobiologiia; 1974; 14(2):229-36. PubMed ID: 4832877
    [No Abstract]   [Full Text] [Related]  

  • 16. [Stochastic nature of the development of radiation injury to the cells and the form of dose-survival dependence].
    Barsukov VS; Malinovskiĭ OV
    Radiobiologiia; 1974; 14(1):68-73. PubMed ID: 4821648
    [No Abstract]   [Full Text] [Related]  

  • 17. [Mathematical model of a simultaneous combined effect of ionizing radiation and hyperthermia].
    Komarov VP; Petin VG
    Radiobiologiia; 1983; 23(4):484-8. PubMed ID: 6611872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The use of mathematical optimization in radiation therapy for finding optimum irradiation techniques (author's transl)].
    Franke DS
    Radiobiol Radiother (Berl); 1980 Oct; 21(5):668-76. PubMed ID: 7208855
    [No Abstract]   [Full Text] [Related]  

  • 19. [Characteristics of the formation of radioraces of yeast organisms. 3. Quantitative characteristics of the radiation race formation in diploid yeasts].
    Korogodin VI; Bliznik KW; Kapul'tsevich IuG; Petin VG; Kabakova NM
    Radiobiologiia; 1972; 12(6):857-63. PubMed ID: 4665052
    [No Abstract]   [Full Text] [Related]  

  • 20. [Probability of the occurrence of radiation complications in tissues as a function of the probability of the death of their constituent cells].
    Klepper LIa
    Med Radiol (Mosk); 1988 Oct; 33(10):59-63. PubMed ID: 3185195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.