These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 4780703)

  • 1. The photochemical activities and electron carriers of developing barley leaves.
    Plesnicar M; Bendall DS
    Biochem J; 1973 Nov; 136(3):803-12. PubMed ID: 4780703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reconstitution of photosystem 1 in barley plastids lacking pigment P700.
    Morgan NL; Griffiths WT
    Biochem Soc Trans; 1976; 4(4):667-9. PubMed ID: 1001739
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effects of pyridazinones and cerulenin on the biosynthesis and functional state of photosystem 2 in barley leaves].
    Rakhimberdieva MG; Lekhotski E; Karapetian NV; Krasnovskiĭ AA
    Biokhimiia; 1982 Apr; 47(4):637-46. PubMed ID: 7044428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of plastocyanin and cytochrome 553 with photosystem I of Scenedesmus.
    Kunert KJ; Böhme H; Böger P
    Biochim Biophys Acta; 1976 Dec; 449(3):541-53. PubMed ID: 999853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Appearance and development of P700 oxidation and photosystem I activity in etio-chloroplasts prepared from greening barley leaves.
    Egnéus H; Selldén G; Andersson L
    Planta; 1976 Jan; 133(1):47-52. PubMed ID: 24425178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of cytochrome b6f at low and high light intensity and cyclic electron transport in leaves.
    Laisk A; Eichelmann H; Oja V; Peterson RB
    Biochim Biophys Acta; 2005 Jun; 1708(1):79-90. PubMed ID: 15949986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Photochemical Activity and the Appearance of the High Potential Form of Cytochrome b-559 in Greening Barley Seedlings.
    Henningsen KW; Boardman NK
    Plant Physiol; 1973 Jun; 51(6):1117-26. PubMed ID: 16658477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reduction of plastocyanin by plastoquinol-1 in the presence of chloroplasts. A dark electron transfer reaction involving components between the two photosystems.
    Wood PM; Bendall DS
    Eur J Biochem; 1976 Jan; 61(2):337-44. PubMed ID: 174911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Photosynthetic electron transfer at the level of cytochrome f and plastocyanin].
    Akulova EA; Roshchina VV
    Biokhimiia; 1977 Dec; 42(12):2140-8. PubMed ID: 23182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The photosynthetic electron transport chain of a mutant strain of Chlamydomonas reinhardi lacking P700 activity.
    Givan AL; Levine RP
    Biochim Biophys Acta; 1969; 189(3):404-10. PubMed ID: 5363978
    [No Abstract]   [Full Text] [Related]  

  • 11. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative activities of linear and cyclic electron flows during chloroplast CO2-fixation.
    Slovacek RE; Crowther D; Hind G
    Biochim Biophys Acta; 1980 Oct; 592(3):495-505. PubMed ID: 6774748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Appearance of photochemical function in prothylakoids during plastid development.
    Wellburn AR; Hampp R
    Biochim Biophys Acta; 1979 Aug; 547(2):380-97. PubMed ID: 37909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome f function in photosynthetic electron transport.
    Whitmarsh J; Cramer WA
    Biophys J; 1979 May; 26(2):223-34. PubMed ID: 262417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the Primary Photochemical Apparatus of Photosynthesis during Greening of Etiolated Bean Leaves.
    Baker NR; Butler WL
    Plant Physiol; 1976 Oct; 58(4):526-9. PubMed ID: 16659710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria.
    Fork DC; Herbert SK
    Photosynth Res; 1993 Jun; 36(3):149-68. PubMed ID: 24318920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular physiology of plastids. 8. Pigment and membrane formation in plastids of barley greening under low light intensity.
    Henningsen KW; Boynton JE
    J Cell Biol; 1970 Feb; 44(2):290-304. PubMed ID: 5411076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characteristics of photosystem I from grana thylakoids and from stroma lamellae].
    Rakhimeberdieva MG; Bukhov NG; Karapetian NV
    Biokhimiia; 1977 Oct; 42(10):1864-71. PubMed ID: 922071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of P700-Chlorophyll a Protein Complex, Plastocyanin, and Cytochrome b(6)/f Complex.
    Takabe T; Takabe T; Akazawa T
    Plant Physiol; 1986 May; 81(1):60-6. PubMed ID: 16664808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetics of pigment-acceptor interaction induced by steady-state illumination in Synechocystis spaeroides photosystem I preparations cooled to 160 K in the dark and on light].
    Noks PP; Krasil'nikov PM; Heinnickel M; Rubin AB
    Biofizika; 2006; 51(1):65-72. PubMed ID: 16521555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.